1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Selenadiazole Derivatives Inhibit Angiogenesis-Mediated Human Breast Tumor Growth by Suppressing the VEGFR2-Mediated ERK and AKT Signaling Pathways

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor metastasis: molecular insights and evolving paradigms.

          Metastases represent the end products of a multistep cell-biological process termed the invasion-metastasis cascade, which involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments. Each of these events is driven by the acquisition of genetic and/or epigenetic alterations within tumor cells and the co-option of nonneoplastic stromal cells, which together endow incipient metastatic cells with traits needed to generate macroscopic metastases. Recent advances provide provocative insights into these cell-biological and molecular changes, which have implications regarding the steps of the invasion-metastasis cascade that appear amenable to therapeutic targeting. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            VEGF and angiopoietin signaling in tumor angiogenesis and metastasis.

            Solid tumors require blood vessels for growth and dissemination, and lymphatic vessels as additional conduits for metastatic spread. The identification of growth factor receptor pathways regulating angiogenesis has led to the clinical approval of the first antiangiogenic molecules targeted against the vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR)-2 pathway. However, in many cases resistance to anti-VEGF-VEGFR therapy occurs, and thus far the clinical benefit has been limited to only modest improvements in overall survival. Therefore, novel treatment modalities are required. Here, we discuss the members of the VEGF-VEGFR family as well as the angiopoietin growth factors and their Tie receptors as potential novel targets for antiangiogenic and antilymphangiogenic therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vascular endothelial growth factor signaling pathways: therapeutic perspective.

              The establishment of a vascular supply is one of the earliest and most important events occurring during embryonic development. Growth and maturation of a functional vascular network are complex and still incompletely understood processes involving orchestrated activation of vascular progenitors in the early stages of embryonic development followed by vasculogenesis and angiogenesis. These processes require a tightly regulated activation of several growth factors and their receptors. The role of vascular endothelial growth factors (VEGF) and their receptors has been studied extensively due to their prominent role during blood vessel formation. Mice deficient in various VEGF ligands or receptors show serious defects in vascular formation and maturation. Moreover, members of the VEGF family are involved in other significant biological processes, including lymphangiogenesis, vascular permeability, and hematopoiesis. Importantly, VEGF is released by tumor cells and induces tumor neovascularization. It is now well established that the VEGF axis represents an important target for antitumor therapy. Aberrant VEGF signaling is also a feature of several other pathologic conditions, such as age-related macular degeneration and rheumatoid arthritis.
                Bookmark

                Author and article information

                Journal
                Chemistry - An Asian Journal
                Chem. Asian J.
                Wiley
                18614728
                June 04 2018
                June 04 2018
                May 08 2018
                : 13
                : 11
                : 1447-1457
                Affiliations
                [1 ]Department of Chemistry; Jinan University; Guangzhou 510632 China
                [2 ]Institute of Food Safety and Nutrition; Jinan University; Guangzhou 510632 China
                Article
                10.1002/asia.201800110
                c23e5a47-dd62-4e19-8757-9a393e68f70c
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article