23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ENO regulates tomato fruit size through the floral meristem development network

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Fruit-size increase is one of the major changes associated with tomato domestication, and it currently represents an important objective for breeding. Regulatory mutations at the LOCULE NUMBER and FASCIATED loci, the orthologues of the Arabidopsis WUSCHEL and CLAVATA3, have mainly contributed to enlarging fruit size by altering meristem activity. Here, we identify ENO as a tomato fruit regulator, which may function by regulating WUSCHEL gene expression to restrict stem-cell proliferation in a flower-specific manner. Our findings also show that a mutation in the ENO promoter was selected during domestication to establish the background for enhancing fruit size in cultivated tomatoes, denoting that transcriptional changes in key regulators have significant effects on agronomic traits.

          Abstract

          A dramatic evolution of fruit size has accompanied the domestication and improvement of fruit-bearing crop species. In tomato ( Solanum lycopersicum), naturally occurring cis-regulatory mutations in the genes of the CLAVATA-WUSCHEL signaling pathway have led to a significant increase in fruit size generating enlarged meristems that lead to flowers with extra organs and bigger fruits. In this work, by combining mapping-by-sequencing and CRISPR/Cas9 genome editing methods, we isolated EXCESSIVE NUMBER OF FLORAL ORGANS ( ENO), an AP2/ERF transcription factor which regulates floral meristem activity. Thus, the ENO gene mutation gives rise to plants that yield larger multilocular fruits due to an increased size of the floral meristem. Genetic analyses indicate that eno exhibits synergistic effects with mutations at the LOCULE NUMBER (encoding SlWUS) and FASCIATED (encoding SlCLV3) loci, two central players in the evolution of fruit size in the domestication of cultivated tomatoes. Our findings reveal that an eno mutation causes a substantial expansion of SlWUS expression domains in a flower-specific manner. In vitro binding results show that ENO is able to interact with the GGC-box cis-regulatory element within the SlWUS promoter region, suggesting that ENO directly regulates SlWUS expression domains to maintain floral stem-cell homeostasis. Furthermore, the study of natural allelic variation of the ENO locus proved that a cis-regulatory mutation in the promoter of ENO had been targeted by positive selection during the domestication process, setting up the background for significant increases in fruit locule number and fruit size in modern tomatoes.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes.

          The higher-plant shoot meristem is a dynamic structure whose maintenance depends on the coordination of two antagonistic processes, organ initiation and self-renewal of the stem cell population. In Arabidopsis shoot and floral meristems, the WUSCHEL (WUS) gene is required for stem cell identity, whereas the CLAVATA1, 2, and 3 (CLV) genes promote organ initiation. Our analysis of the interactions between these key regulators indicates that (1) the CLV genes repress WUS at the transcript level and that (2) WUS expression is sufficient to induce meristem cell identity and the expression of the stem cell marker CLV3. Our data suggest that the shoot meristem has properties of a self-regulatory system in which WUS/CLV interactions establish a feedback loop between the stem cells and the underlying organizing center.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs.

            Transcription factors belonging to the APETALA2/Ethylene Responsive Factor (AP2/ERF) family are conservatively widespread in the plant kingdom. These regulatory proteins are involved in the control of primary and secondary metabolism, growth and developmental programs, as well as responses to environmental stimuli. Due to their plasticity and to the specificity of individual members of this family, AP2/ERF transcription factors represent valuable targets for genetic engineering and breeding of crops. In this review, we integrate the evidence collected from functional and structural studies to describe their different mechanisms of action and the regulatory pathways that affect their activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.

              APETALA2 (AP2) plays a central role in the establishment of the floral meristem, the specification of floral organ identity, and the regulation of floral homeotic gene expression in Arabidopsis. We show here that in addition to its functions during flower development, AP2 activity is also required during seed development. We isolated the AP2 gene and found that it encodes a putative nuclear protein that is distinguished by an essential 68-amino acid repeated motif, the AP2 domain. Consistent with its genetic functions, we determined that AP2 is expressed at the RNA level in all four types of floral organs--sepals, petals, stamens, and carpels--and in developing ovules. Thus, AP2 gene transcription does not appear to be spatially restricted by the floral homeotic gene AGAMOUS as predicted by previous studies. We also found that AP2 is expressed at the RNA level in the inflorescence meristem and in nonfloral organs, including leaf and stem. Taken together, our results suggest that AP2 represents a new class of plant regulatory proteins that may play a general role in the control of Arabidopsis development.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                7 April 2020
                16 March 2020
                16 March 2020
                : 117
                : 14
                : 8187-8195
                Affiliations
                [1] aCentro de Investigación en Biotecnología Agroalimentaria,Universidad de Almería , 04120 Almería, Spain;
                [2] bDepartment of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , 50829 Cologne, Germany;
                [3] cInstituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València–Consejo Superior de Investigaciones Científicas , 46022 Valencia, Spain;
                [4] dGenome Research Group, Thünen Institute of Forest Genetics , 22927 Grosshansdorf, Germany;
                [5] eInstitut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), AgroParisTech, CNRS, Université Paris-Saclay , 78026 Versailles, France
                Author notes
                2To whom correspondence may be addressed. Email: rlozano@ 123456ual.es .

                Edited by James J. Giovannoni, US Department of Agriculture, Ithaca, NY, and approved February 6, 2020 (received for review August 8, 2019)

                Author contributions: F.J.Y.-L. and R.L. designed research; F.J.Y.-L., A.F.-L., B.P., S.B., A.O.-A., and B.G.-S. performed research; F.J.Y.-L., A.F.-L., N.A.M., T.A., J.C., V.M., J.M.J.-G., and R.L. contributed new reagents/analytic tools; F.J.Y.-L., A.F.-L., B.P., S.B., A.O.-A., N.A.M., T.A., J.C., V.M., J.M.J.-G., and R.L. analyzed data; and F.J.Y.-L., A.F.-L., and R.L. wrote the paper.

                1F.J.Y.-L. and A.F.-L. contributed equally to this work.

                Author information
                http://orcid.org/0000-0001-5213-042X
                http://orcid.org/0000-0002-5033-7192
                http://orcid.org/0000-0001-5458-2075
                Article
                201913688
                10.1073/pnas.1913688117
                7148573
                32179669
                c27a204d-8e8f-4f85-8f26-185a844d74e8
                Copyright © 2020 the Author(s). Published by PNAS.

                This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

                History
                Page count
                Pages: 9
                Categories
                Biological Sciences
                Plant Biology
                From the Cover

                solanum lycopersicum,fruit size,floral meristem,clavata-wuschel regulatory network,ap2/erf transcription factor

                Comments

                Comment on this article