31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hospitalization Rates for Coronary Heart Disease in Relation to Residence Near Areas Contaminated with Persistent Organic Pollutants and Other Pollutants

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exposure to environmental pollutants may contribute to the development of coronary heart disease (CHD). We determined the ZIP codes containing or abutting each of the approximately 900 hazardous waste sites in New York and identified the major contaminants in each. Three categories of ZIP codes were then distinguished: those containing or abutting sites contaminated with persistent organic pollutants (POPs), those containing only other types of wastes (“other waste”), and those not containing any identified hazardous waste site (“clean”). Effects of residence in each of these ZIP codes on CHD and acute myocardial infarction (AMI) hospital discharge rates were assessed with a negative binomial model, adjusting for age, sex, race, income, and health insurance coverage. Patients living in ZIP codes contaminated with POPs had a statistically significant 15.0% elevation in CHD hospital discharge rates and a 20.0% elevation in AMI discharge rates compared with clean ZIP codes. In neither of the comparisons were rates in other-waste sites significantly greater than in clean sites. In a subset of POP ZIP codes along the Hudson River, where average income is higher and there is less smoking, better diet, and more exercise, the rate of hospitalization for CHD was 35.8% greater and for AMI 39.1% greater than in clean sites. Although the cross-sectional design of the study prevents definite conclusions on causal inference, the results indirectly support the hypothesis that living near a POP-contaminated site constitutes a risk of exposure and of development of CHD and AMI.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Association of fine particulate matter from different sources with daily mortality in six U.S. cities.

          Previously we reported that fine particle mass (particulate matter [less than and equal to] 2.5 microm; PM(2.5)), which is primarily from combustion sources, but not coarse particle mass, which is primarily from crustal sources, was associated with daily mortality in six eastern U.S. cities (1). In this study, we used the elemental composition of size-fractionated particles to identify several distinct source-related fractions of fine particles and examined the association of these fractions with daily mortality in each of the six cities. Using specific rotation factor analysis for each city, we identified a silicon factor classified as soil and crustal material, a lead factor classified as motor vehicle exhaust, a selenium factor representing coal combustion, and up to two additional factors. We extracted daily counts of deaths from National Center for Health Statistics records and estimated city-specific associations of mortality with each source factor by Poisson regression, adjusting for time trends, weather, and the other source factors. Combined effect estimates were calculated as the inverse variance weighted mean of the city-specific estimates. In the combined analysis, a 10 microg/m(3) increase in PM(2.5) from mobile sources accounted for a 3.4% increase in daily mortality [95% confidence interval (CI), 1.7-5.2%], and the equivalent increase in fine particles from coal combustion sources accounted for a 1.1% increase [CI, 0.3-2.0%). PM(2.5) crustal particles were not associated with daily mortality. These results indicate that combustion particles in the fine fraction from mobile and coal combustion sources, but not fine crustal particles, are associated with increased mortality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men.

            Iron can induce lipid peroxidation in vitro and in vivo in humans and has promoted ischemic myocardial injury in experimental animals. We tested the hypothesis that high serum ferritin concentration and high dietary iron intake are associated with an excess risk of acute myocardial infarction. Randomly selected men (n = 1,931), aged 42, 48, 54, or 60 years, who had no symptomatic coronary heart disease at entry, were examined in the Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD) in Eastern Finland between 1984 and 1989. Fifty-one of these men experienced an acute myocardial infarction during an average follow-up of 3 years. On the basis of a Cox proportional hazards model adjusting for age, examination year, cigarette pack-years, ischemic ECG in exercise test, maximal oxygen uptake, systolic blood pressure, blood glucose, serum copper, blood leukocyte count, and serum high density lipoprotein cholesterol, apolipoprotein B, and triglyceride concentrations, men with serum ferritin greater than or equal to 200 micrograms/l had a 2.2-fold (95% CI, 1.2-4.0; p less than 0.01) risk factor-adjusted risk of acute myocardial infarction compared with men with a lower serum ferritin. An elevated serum ferritin was a strong risk factor for acute myocardial infarction in all multivariate models. This association was stronger in men with serum low density lipoprotein cholesterol concentration of 5.0 mmol/l (193 mg/dl) or more than in others. Also, dietary iron intake had a significant association with the disease risk in a Cox model with the same covariates. Our data suggest that a high stored iron level, as assessed by elevated serum ferritin concentration, is a risk factor for coronary heart disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Uses of ecologic analysis in epidemiologic research.

              Despite the widespread use of ecologic analysis in epidemiologic research and health planning, little attention has been given by health scientists and practitioners to the methodological aspects of this approach. This paper reviews the major types of ecologic study designs, the analytic methods appropriate for each, the limitations of ecologic data for making causal inferences and what can be done to minimize these problems, and the relative advantages of ecologic analysis. Numerous examples are provided to illustrate the important principles and methods. A careful distinction is made between ecologic studies that generate or test etiologic hypotheses and those that evaluate the impact of intervention programs or policies (given adequate knowledge of disease etiology). Failure to recognize this difference in the conduct of ecologic studies can lead to results that are not very informative or that are misinterpreted by others.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental Health Perspectives
                National Institue of Environmental Health Sciences
                0091-6765
                June 2005
                14 March 2005
                : 113
                : 6
                : 756-761
                Affiliations
                Institute for Health and the Environment, University at Albany, Rensselaer, New York, USA
                Author notes
                Address correspondence to D.O. Carpenter, Institute for Health and the Environment, University at Albany, One University Place, A217, Rensselaer, NY 12144-3456 USA. Telephone: (518) 525-2660. Fax: (518) 525-2665. E-mail: carpent@uamail.albany.edu

                *Current address: Hospital Therapy Department, Smolensk State Medical Academy, Krupskoy St., 28, Smolensk, 214019 Russia.

                We thank L. Le, I. Scherbatykh, and R. Huang for help with the figure and data analysis.

                This work was supported by the Edmund S. Muskie/Freedom Support Act Graduate Fellowship Program and the Fogarty International Center, National Institutes of Health (TW00636 to D.O.C.).

                The authors declare they have no competing financial interests.

                Article
                ehp0113-000756
                10.1289/ehp.7595
                1257602
                15929900
                c36d1401-ab19-48c6-b222-d27539b2e933
                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.
                History
                : 20 September 2004
                : 14 March 2005
                Categories
                Research
                Articles

                Public health
                hospitalization,superfund sites,persistent organic pollutants,hazardous waste sites,acute myocardial infarction

                Comments

                Comment on this article