17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes mellitus is a chronic metabolic condition that affects carbohydrate, lipid and protein metabolism and may impair numerous organs and functions of the organism. Cardiac dysfunction afflicts many patients who experience the oxidative stress of the heart. Diabetic cardiomyopathy (DCM) is one of the major complications that accounts for more than half of diabetes-related morbidity and mortality cases. Chronic hyperglycemia and hyperlipidemia from diabetes mellitus cause cardiac oxidative stress, endothelial dysfunction, impaired cellular calcium handling, mitochondrial dysfunction, metabolic disturbances, and remodeling of the extracellular matrix, which ultimately lead to DCM. Although many studies have explored the mechanisms leading to DCM, the pathophysiology of DCM has not yet been fully clarified. In fact, as a potential mechanism, the associations between DCM development and mitogen-activated protein kinase (MAPK) activation have been the subjects of tremendous interest. Nonetheless, much remains to be investigated, such as tissue- and cell-specific processes of selection of MAPK activation between pro-apoptotic vs. pro-survival fate, as well as their relation with the pathogenesis of diabetes and associated complications. In general, it turns out that MAPK signaling pathways, such as extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, are demonstrated to be actively involved in myocardial dysfunction, hypertrophy, fibrosis and heart failure. As one of MAPK family members, the activation of ERK1/2 has also been known to be involved in cardiac hypertrophy and dysfunction. However, many recent studies have demonstrated that ERK1/2 signaling activation also plays a crucial role in FGF21 signaling and exerts a protective environment of glucose and lipid metabolism, therefore preventing abnormal healing and cardiac dysfunction. The duration, extent, and subcellular compartment of ERK1/2 activation are vital to differential biological effects of ERK1/2. Moreover, many intracellular events, including mitochondrial signaling and protein kinases, manipulate signaling upstream and downstream of MAPK, to influence myocardial survival or death. In this review, we will summarize the roles of ERK1/2 pathways in DCM development by the evidence from current studies and will present novel opinions on “differential influence of ERK1/2 action in cardiac dysfunction, and protection against myocardial ischemia-reperfusion injury”.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer?

          Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) are members of the mitogen-activated protein kinase super family that can mediate cell proliferation and apoptosis. The Ras-Raf-MEK-ERK signaling cascade controlling cell proliferation has been well studied but the mechanisms involved in ERK1/2-mediated cell death are largely unknown. This review focuses on recent papers that define ERK1/2 translocation to the nucleus and the proteins involved in the cytosolic retention of activated ERK1/2. Cytosolic retention of ERK1/2 denies access to the transcription factor substrates that are responsible for the mitogenic response. In addition, cytosolic ERK1/2, besides inhibiting survival and proliferative signals in the nucleus, potentiates the catalytic activity of some proapoptotic proteins such as DAP kinase in the cytoplasm. Studies that further define the function of cytosolic ERK1/2 and its cytosolic substrates that enhance cell death will be essential to harness this pathway for developing effective treatments for cancer and chronic inflammatory diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic cardiomyopathy, causes and effects.

            Diabetes is associated with increased incidence of heart failure even after controlling for coronary artery disease and hypertension. Thus, as diabetic cardiomyopathy has become an increasingly recognized entity among clinicians, a better understanding of its pathophysiology is necessary for early diagnosis and the development of treatment strategies for diabetes-associated cardiovascular dysfunction. We will review recent basic and clinical research into the manifestations and the pathophysiological mechanisms of diabetic cardiomyopathy. The discussion will be focused on the structural, functional and metabolic changes that occur in the myocardium in diabetes and how these changes may contribute to the development of diabetic cardiomyopathy in affected humans and relevant animal models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale.

              Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                08 December 2016
                December 2016
                : 17
                : 12
                : 2001
                Affiliations
                [1 ]Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China; wsxuzheng@ 123456163.com (Z.X.); sunjianemail@ 123456126.com (J.S.); tongqian187@ 123456aliyun.com (Q.T.)
                [2 ]Department of Pediatrics, Kosair Children’s Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA; bioqian@ 123456163.com
                [3 ]Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; q0lin002@ 123456louisville.edu
                [4 ]Department of Basic Medical Sciences, Hangzhou Medical College, Hangzhou 310053, China
                [5 ]College of Medicine & Engineering, Hanyang University, Seoul 04963, Korea
                Author notes
                [* ]Correspondence: parkys@ 123456hanyang.ac.kr (Y.P.); zhengyang@ 123456jlu.edu.cn (Y.Z.); Tel.: +82-10-9072-2239 (Y.P.); +86-431-8878-2217 (Y.Z.)
                Article
                ijms-17-02001
                10.3390/ijms17122001
                5187801
                27941647
                c39c6e34-6e02-4d47-b832-b13d85c3173c
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 September 2016
                : 22 November 2016
                Categories
                Review

                Molecular biology
                diabetic cardiomyopathy,erk1/2 mapk,cardiac dysfunction,cardiac remodeling,histone deacetylase (hdac),micrornas

                Comments

                Comment on this article