Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Molecular Aetiology of Primary Hyperoxaluria Type 1

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Primary hyperoxaluria type 1 (PH1) is a rare autosomal-recessive disorder, caused by a deficiency of the liver-specific intermediary-metabolic enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in increased synthesis and excretion of the metabolic end-product oxalate and the deposition of insoluble calcium oxalate in the kidney and urinary tract. Numerous mutations and polymorphisms have been identified in the gene (AGXT) that encodes AGT, some of which interact synergistically to cause a variety of complex enzyme phenotypes, including AGT intraperoxisomal aggregation, accelerated degradation, and peroxisome-to-mitochondrion mistargeting. The latter is the single most common cause of PH1 and results from the functional interaction between a common Pro11Leu polymorphism and a disease-specific Gly170Arg mutation. The recent solution of the crystal structure of AGT has enabled the effects of several mutations and polymorphisms to be rationalised in terms of their likely effects on AGT conformation. Increased understanding of the molecular aetiology of PH1 has led to significant improvements in all aspects of the clinical management of the disorder, including diagnosis (by enzyme assay of percutaneous needle liver biopsies), prenatal diagnosis (by DNA analysis of chorionic villus samples) and treatment (by liver transplantation as a form of enzyme replacement therapy).

          Related collections

          Most cited references 14

          • Record: found
          • Abstract: found
          • Article: not found

          Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I.

          Activities of alanine:glyoxylate aminotransferase in the livers of two patients with primary hyperoxaluria type I were substantially lower than those found in five control human livers. Detailed subcellular fractionation of one of the hyperoxaluric livers, compared with a control liver, showed that there was a complete absence of peroxisomal alanine:glyoxylate aminotransferase. This enzyme deficiency explains most of the biochemical characteristics of the disease and means that primary hyperoxaluria type I should be added to the rather select list of peroxisomal disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1.

            A deficiency of the liver-specific enzyme alanine:glyoxylate aminotransferase (AGT) is responsible for the potentially lethal hereditary kidney stone disease primary hyperoxaluria type 1 (PH1). Many of the mutations in the gene encoding AGT are associated with specific enzymatic phenotypes such as accelerated proteolysis (Ser205Pro), intra-peroxisomal aggregation (Gly41Arg), inhibition of pyridoxal phosphate binding and loss of catalytic activity (Gly82Glu), and peroxisome-to-mitochondrion mistargeting (Gly170Arg). Several mutations, including that responsible for AGT mistargeting, co-segregate and interact synergistically with a Pro11Leu polymorphism found at high frequency in the normal population. In order to gain further insights into the mechanistic link between genotype and enzymatic phenotype in PH1, we have determined the crystal structure of normal human AGT complexed to the competitive inhibitor amino-oxyacetic acid to 2.5A. Analysis of this structure allows the effects of these mutations and polymorphism to be rationalised in terms of AGT tertiary and quaternary conformation, and in particular it provides a possible explanation for the Pro11Leu-Gly170Arg synergism that leads to AGT mistargeting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase.

              Primary hyperoxaluria type 1 (PH1) is an inborn error of metabolism resulting from a deficiency of alanine:glyoxylate aminotransferase (AGXT; EC 2.6.1.44). Most of the PH1 alleles detected in the Canary Islands carry the Ile-244 --> Thr (I244T) mutation in the AGXT gene, with 14 of 16 patients homozygous for this mutation. Four polymorphisms within AGXT and regional microsatellites also were shared in their haplotypes (AGXT*LTM), consistent with a founder effect. The consequences of these amino acid changes were investigated. Although I244T alone did not affect AGXT activity or subcellular localization, when present in the same protein molecule as Leu-11 --> Pro (L11P), it resulted in loss of enzymatic activity in soluble cell extracts. Like its normal counterpart, the AGXT*LTM protein was present in the peroxisomes but it was insoluble in detergent-free buffers. The polymorphism L11P behaved as an intragenic modifier of the I244T mutation, with the resulting protein undergoing stable interaction with molecular chaperones and aggregation. This aggregation was temperature-sensitive. AGXT*LTM expressed in Escherichia coli, as a GST-fusion protein, and in insect cells could be purified and retained enzymatic activity. Among various chemical chaperones tested in cell culture, betaine substantially improved the solubility of the mutant protein and the enzymatic activity in cell lysates. In summary, I244T, the second most common mutation responsible for PH1, is a protein conformational disease that may benefit from new therapies with pharmacological chaperones or small molecules to minimize protein aggregation.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                978-3-8055-7852-3
                978-3-318-06156-7
                1660-2129
                2004
                October 2004
                17 November 2004
                : 98
                : 2
                : e39-e44
                Affiliations
                Department of Biology, University College London, London, UK
                Article
                80254 Nephron Exp Nephrol 2004;98:e39–e44
                10.1159/000080254
                15499210
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 4, References: 25, Pages: 1
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/80254
                Categories
                Paper

                Comments

                Comment on this article