13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Evolution of Human Handedness

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo- Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: not found
          • Book: not found

          R: A language and environment for statistical computing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A theory of cerebellar cortex.

            D. Marr (1969)
            1. A detailed theory of cerebellar cortex is proposed whose consequence is that the cerebellum learns to perform motor skills. Two forms of input-output relation are described, both consistent with the cortical theory. One is suitable for learning movements (actions), and the other for learning to maintain posture and balance (maintenance reflexes).2. It is known that the cells of the inferior olive and the cerebellar Purkinje cells have a special one-to-one relationship induced by the climbing fibre input. For learning actions, it is assumed that:(a) each olivary cell responds to a cerebral instruction for an elemental movement. Any action has a defining representation in terms of elemental movements, and this representation has a neural expression as a sequence of firing patterns in the inferior olive; and(b) in the correct state of the nervous system, a Purkinje cell can initiate the elemental movement to which its corresponding olivary cell responds.3. Whenever an olivary cell fires, it sends an impulse (via the climbing fibre input) to its corresponding Purkinje cell. This Purkinje cell is also exposed (via the mossy fibre input) to information about the context in which its olivary cell fired; and it is shown how, during rehearsal of an action, each Purkinje cell can learn to recognize such contexts. Later, when the action has been learnt, occurrence of the context alone is enough to fire the Purkinje cell, which then causes the next elemental movement. The action thus progresses as it did during rehearsal.4. It is shown that an interpretation of cerebellar cortex as a structure which allows each Purkinje cell to learn a number of contexts is consistent both with the distributions of the various types of cell, and with their known excitatory or inhibitory natures. It is demonstrated that the mossy fibre-granule cell arrangement provides the required pattern discrimination capability.5. The following predictions are made.(a) The synapses from parallel fibres to Purkinje cells are facilitated by the conjunction of presynaptic and climbing fibre (or post-synaptic) activity.(b) No other cerebellar synapses are modifiable.(c) Golgi cells are driven by the greater of the inputs from their upper and lower dendritic fields.6. For learning maintenance reflexes, 2(a) and 2(b) are replaced by2'. Each olivary cell is stimulated by one or more receptors, all of whose activities are usually reduced by the results of stimulating the corresponding Purkinje cell.7. It is shown that if (2') is satisfied, the circuit receptor --> olivary cell --> Purkinje cell --> effector may be regarded as a stabilizing reflex circuit which is activated by learned mossy fibre inputs. This type of reflex has been called a learned conditional reflex, and it is shown how such reflexes can solve problems of maintaining posture and balance.8. 5(a), and either (2) or (2') are essential to the theory: 5(b) and 5(c) are not absolutely essential, and parts of the theory could survive the disproof of either.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A theory of cerebellar function

                Bookmark

                Author and article information

                Journal
                Ann N Y Acad Sci
                Ann. N. Y. Acad. Sci
                nyas
                Annals of the New York Academy of Sciences
                Blackwell Publishing Ltd (Oxford, UK )
                0077-8923
                1749-6632
                June 2013
                06 May 2013
                : 1288
                : 1
                : 59-69
                Affiliations
                [1 ]Department of Anthropology, University College London London, United Kingdom
                [2 ]Department of Genetics, Evolution and Environment, University College London London, United Kingdom
                [3 ]University College London, Institute of Archaeology London, United Kingdom
                [4 ]Florida State University, Department of Psychology Tallahassee, Florida
                [5 ]Research Center Jülich, Institute of Neuroscience and Medicine INM-1, and JARA-Brain Jülich, Germany
                [6 ]Departments of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital Aachen Aachen, Germany
                Author notes
                Address for correspondence: Jeroen B. Smaers, Department of Anthropology, University College London, 14 Taviton Street, London, WC1H 0BW, UK. j.smaers@ 123456ucl.ac.uk

                [The copyright line for this article was changed on July 18, 2014 after original online publication.]

                Article
                10.1111/nyas.12047
                4298027
                23647442
                c491ebad-2650-44a4-b246-4def12858279
                © 2013 The New York Academy of Sciences

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Original Articles

                Uncategorized
                laterality,primates,cerebellum,prefrontal cortex,tool use
                Uncategorized
                laterality, primates, cerebellum, prefrontal cortex, tool use

                Comments

                Comment on this article