12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Green Synthesis of Cobalt Ferrite Nanoparticles: An Emerging Material for Environmental and Biomedical Applications

      1 , 2 , 3 , 4 , 1
      Journal of Nanomaterials
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Research and utilization of nanotechnology are growing exponentially in every aspect of life. The constant growth of applications for magnetic nanoparticles, specifically nanoferrites, attracted many researchers. Among them, nanocobalt ferrite is the most crucial and studied magnetic nanoparticle. Environmentally benign synthetic methods became necessary to minimize environmental and occupational hazards. Green synthesis approaches in science and technology are now widely applied in the synthesis of nanomaterials. Herein, we reviewed recent advances in synthesizing nanocobalt ferrites and their composites using various scientific search engines. Subsequently, various applications were discussed, such as environmental (treatment of water/wastewater, photocatalytic degradation of dyes, and nanosorbent for environmental remediation) and biomedical (nanobiosensors for cancer diagnosis at the primary stage, effective targeted drug delivery, magnetic resonance imaging, hyperthermia, and potential drug candidates against cancer and microbial infections). This review offers comprehensive knowledge on how to choose appropriate natural resources for the green synthesis of nanocobalt ferrite and the benefits of this approach compared to conventional methods.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Controlled drug delivery vehicles for cancer treatment and their performance

          Although conventional chemotherapy has been successful to some extent, the main drawbacks of chemotherapy are its poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, development of multiple drug resistance, and non-specific targeting. The main aim in the development of drug delivery vehicles is to successfully address these delivery-related problems and carry drugs to the desired sites of therapeutic action while reducing adverse side effects. In this review, we will discuss the different types of materials used as delivery vehicles for chemotherapeutic agents and their structural characteristics that improve the therapeutic efficacy of their drugs and will describe recent scientific advances in the area of chemotherapy, emphasizing challenges in cancer treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine

            Nanoscience breakthroughs in almost every field of science and nanotechnologies make life easier in this era. Nanoscience and nanotechnology represent an expanding research area, which involves structures, devices, and systems with novel properties and functions due to the arrangement of their atoms on the 1–100 nm scale. The field was subject to a growing public awareness and controversy in the early 2000s, and in turn, the beginnings of commercial applications of nanotechnology. Nanotechnologies contribute to almost every field of science, including physics, materials science, chemistry, biology, computer science, and engineering. Notably, in recent years nanotechnologies have been applied to human health with promising results, especially in the field of cancer treatment. To understand the nature of nanotechnology, it is helpful to review the timeline of discoveries that brought us to the current understanding of this science. This review illustrates the progress and main principles of nanoscience and nanotechnology and represents the pre-modern as well as modern timeline era of discoveries and milestones in these fields.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic

              The industrial activities of the last century have caused massive increases in human exposure to heavy metals. Mercury, lead, chromium, cadmium, and arsenic have been the most common heavy metals that induced human poisonings. Here, we reviewed the mechanistic action of these heavy metals according to the available animal and human studies. Acute or chronic poisonings may occur following exposure through water, air, and food. Bioaccumulation of these heavy metals leads to a diversity of toxic effects on a variety of body tissues and organs. Heavy metals disrupt cellular events including growth, proliferation, differentiation, damage-repairing processes, and apoptosis. Comparison of the mechanisms of action reveals similar pathways for these metals to induce toxicity including ROS generation, weakening of the antioxidant defense, enzyme inactivation, and oxidative stress. On the other hand, some of them have selective binding to specific macromolecules. The interaction of lead with aminolevulinic acid dehydratase and ferrochelatase is within this context. Reactions of other heavy metals with certain proteins were discussed as well. Some toxic metals including chromium, cadmium, and arsenic cause genomic instability. Defects in DNA repair following the induction of oxidative stress and DNA damage by the three metals have been considered as the cause of their carcinogenicity. Even with the current knowledge of hazards of heavy metals, the incidence of poisoning remains considerable and requires preventive and effective treatment. The application of chelation therapy for the management of metal poisoning could be another aspect of heavy metals to be reviewed in the future.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Nanomaterials
                Journal of Nanomaterials
                Hindawi Limited
                1687-4129
                1687-4110
                February 6 2023
                February 6 2023
                : 2023
                : 1-15
                Affiliations
                [1 ]Department of Basic and Applied Sciences, MGM University, Aurangabad 431001, Maharashtra, India
                [2 ]Materials Science Research Laboratory, SKM, Gunjoti, Osmanabad 413613, Maharashtra, India
                [3 ]Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Baridua, Ri-Bhoi, Techno City 793101, Meghalaya, India
                [4 ]Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
                Article
                10.1155/2023/9770212
                c4960e3b-5d5c-4e04-a8f5-4f34c90d887b
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article