32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible.

      Journal of biomedical materials research
      Acid Etching, Dental, Animals, Biocompatible Materials, Dental Implants, Dogs, Hydrogen-Ion Concentration, Male, Mandible, growth & development, ultrastructure, Microscopy, Electron, Titanium

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many dental clinical implant studies have focused on the success of endosseous implants with a variety of surface characteristics. Most of the surface alterations have been aimed at achieving greater bone-to-implant contact as determined histometrically at the light microscopic level. A previous investigation in non-oral bone under short-term healing periods (3 and 6 weeks) indicated that a sandblasted and acid-etched titanium (SLA) implant had a greater bone-to-implant contact than did a comparably-shaped implant with a titanium plasma-sprayed (TPS) surface. In this canine mandible study, nonsubmerged implants with a SLA surface were compared to TPS-coated implants under loaded and nonloaded conditions for up to 15 months. Six foxhound dogs had 69 implants placed in an alternating pattern with six implants placed bilaterally in each dog. Gold crowns that mimicked the natural occlusion were fabricated for four dogs. Histometric analysis of bone contact with the implants was made for two dogs after 3 months of healing (unloaded group), 6 months of healing (3 months loaded), and after 15 months of healing (12 months loaded). The SLA implants had a significantly higher (p < 0.001) percentage of bone-to-implant contact than did the TPS implants after 3 months of healing (72.33 +/- 7.16 versus 52.15 +/- 9.19; mean +/- SD). After 3 months of loading (6 months of healing) no significant difference was found between the SLA and TPS surfaced implants (68.21 +/- 10.44 and 78.18 +/- 6.81, respectively). After 12 months of loading (15 months of healing) the SLA implants had a significantly greater percentage (p < 0.001) of bone-to-implant contact than did the TPS implants (71.68 +/- 6.64 and 58.88 +/- 4.62, respectively). No qualitative differences in bone tissue were observed between the two groups of implants nor was there any difference between the implants at the clinical level. These results are consistent with earlier studies on SLA implants and suggest that this surface promotes greater osseous contact at earlier time points compared to TPS-coated implants.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: not found
          • Book: not found

          Simultaneous Statistical Inference

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs.

            The purpose of the present study was to evaluate the influence of different surface characteristics on bone integration of titanium implants. Hollow-cylinder implants with six different surfaces were placed in the metaphyses of the tibia and femur in six miniature pigs. After 3 and 6 weeks, the implants with surrounding bone were removed and analyzed in undecalcified transverse sections. The histologic examination revealed direct bone-implant contact for all implants. However, the morphometric analyses demonstrated significant differences in the percentage of bone-implant contact, when measured in cancellous bone. Electropolished as well as the sandblasted and acid pickled (medium grit; HF/HNO3) implant surfaces had the lowest percentage of bone contact with mean values ranging between 20 and 25%. Sandblasted implants with a large grit and titanium plasma-sprayed implants demonstrated 30-40% mean bone contact. The highest extent of bone-implant interface was observed in sandblasted and acid attacked surfaces (large grit; HCl/H2SO4) with mean values of 50-60%, and hydroxylapatite (HA)-coated implants with 60-70%. However, the HA coating consistently revealed signs of resorption. It can be concluded that the extent of bone-implant interface is positively correlated with an increasing roughness of the implant surface.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants.

              In the present multi-center study, non-submerged ITI implants were prospectively followed to evaluate their long-term prognosis in fully and partially edentulous patients. In a total of 1003 patients, 2359 implants were consecutively inserted. Following a healing period of 3-6 months, the successfully integrated implants were restored with 393 removable and 758 fixed restorations. Subsequently, all consecutive implants were documented annually up to 8 years. At each examination, the clinical status of all implants was evaluated according to predefined criteria of success. Therefore, the data base allowed the evaluation of 8-year cumulative survival and success rates for 2359 implants. In addition, cumulative success rates were calculated for implant subgroups divided per implant type, implant length, and implant location. Furthermore, the actual 5-year survival and success rates could be determined for 488 implants. During the healing period, 13 implants did not successfully integrate, whereas 2346 implants fulfilled the predefined criteria of success. This corresponds with an early failure rate of 0.55%. During follow-up, 19 implants were classified as failures due to several reasons. In addition, 17 implants (approximately 0.8%) demonstrated at the last annual examination a suppurative periimplant infection. Including 127 drop out implants (= 5.4% drop out rate) into the calculation, the 8-year cumulative survival and success rates resulted in 96.7% and 93.3%, respectively. The analysis of implant subgroups showed slightly more favorable cumulative success rates for screw type implants (> 95%) compared to hollow-cylinder implants (91.3%), and clearly better success rates for mandibular implants (approximately 95%) when compared to maxillary implants (approximately 87%). The actual 5-year survival and success rates of 488 implants with 98.2% and 97.3%, respectively, were slightly better than the estimated 5-year cumulative survival and success rates of 2359 implants indicating that the applied life table analysis is a reliable statistical method to evaluate the long-term prognosis of dental implants. It can be concluded that non-submerged ITI implants maintain success rates well above 90% in different clinical centers for observation periods up to 8 years.
                Bookmark

                Author and article information

                Journal
                9511093
                10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q

                Chemistry
                Acid Etching, Dental,Animals,Biocompatible Materials,Dental Implants,Dogs,Hydrogen-Ion Concentration,Male,Mandible,growth & development,ultrastructure,Microscopy, Electron,Titanium

                Comments

                Comment on this article