4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasma Ceramides Pathophysiology, Measurements, Challenges, and Opportunities

      , ,
      Metabolites
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ceramides are a family of lipid molecules, composed of sphingosine and a fatty acid, and transported by lipoproteins (primarily by low-density lipoproteins) in the bloodstream. They are not only structural lipids, but multifunctional and bioactive molecules with key roles in many important cellular pathways, such as inflammatory processes and apoptosis, representing potential biomarkers of cardiometabolic diseases as well as pharmacological targets. Recent data reported ceramide modulation by diet and aerobic exercise, suggesting nutrients and exercise-targeting sphingolipid pathways as a countermeasure, also in combination with other therapies, for risk and progression of chronic disease prevention and health maintenance. In this review, we focus on the available data regarding remarks on ceramide structure and metabolism, their pathophysiologic roles, and the effect of dietary habit and aerobic exercise on ceramide levels. Moreover, advancements and limitations of lipidomic techniques and simplification attempts to overcome difficulties of interpretation and to facilitate practical applications, such as the proposal of scores, are also discussed.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Sphingolipids and their metabolism in physiology and disease

          Studies of bioactive lipids in general and sphingolipids in particular have intensified over the past several years, revealing an unprecedented and unanticipated complexity of the lipidome and its many functions, which rivals, if not exceeds, that of the genome or proteome. These results highlight critical roles for bioactive sphingolipids in most, if not all, major cell biological responses, including all major cell signalling pathways, and they link sphingolipid metabolism to key human diseases. Nevertheless, the fairly nascent field of bioactive sphingolipids still faces challenges in its biochemical and molecular underpinnings, including defining the molecular mechanisms of pathway and enzyme regulation, the study of lipid-protein interactions and the development of cellular probes, suitable biomarkers and therapeutic approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ceramide-orchestrated signalling in cancer cells.

            One crucial barrier to progress in the treatment of cancer has been the inability to control the balance between cell proliferation and apoptosis: enter ceramide. Discoveries over the past 15 years have elevated this sphingolipid to the lofty position of a regulator of cell fate. Ceramide, it turns out, is a powerful tumour suppressor, potentiating signalling events that drive apoptosis, autophagic responses and cell cycle arrest. However, defects in ceramide generation and metabolism in cancer cells contribute to tumour cell survival and resistance to chemotherapy. This Review focuses on ceramide signalling and the targeting of specific metabolic junctures to amplify the tumour suppressive activities of ceramide. The potential of ceramide-based therapeutics in the treatment of cancer is also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol

              Aims The aim was to study the prognostic value of plasma ceramides (Cer) as cardiovascular death (CV death) markers in three independent coronary artery disease (CAD) cohorts. Methods and results Corogene study is a prospective Finnish cohort including stable CAD patients (n = 160). Multiple lipid biomarkers and C-reactive protein were measured in addition to plasma Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0), and Cer(d18:1/24:1). Subsequently, the association between high-risk ceramides and CV mortality was investigated in the prospective Special Program University Medicine—Inflammation in Acute Coronary Syndromes (SPUM-ACS) cohort (n = 1637), conducted in four Swiss university hospitals. Finally, the results were validated in Bergen Coronary Angiography Cohort (BECAC), a prospective Norwegian cohort study of stable CAD patients. Ceramides, especially when used in ratios, were significantly associated with CV death in all studies, independent of other lipid markers and C-reactive protein. Adjusted odds ratios per standard deviation for the Cer(d18:1/16:0)/Cer(d18:1/24:0) ratio were 4.49 (95% CI, 2.24–8.98), 1.64 (1.29–2.08), and 1.77 (1.41–2.23) in the Corogene, SPUM-ACS, and BECAC studies, respectively. The Cer(d18:1/16:0)/Cer(d18:1/24:0) ratio improved the predictive value of the GRACE score (net reclassification improvement, NRI = 0.17 and ΔAUC = 0.09) in ACS and the predictive value of the Marschner score in stable CAD (NRI = 0.15 and ΔAUC = 0.02). Conclusions Distinct plasma ceramide ratios are significant predictors of CV death both in patients with stable CAD and ACS, over and above currently used lipid markers. This may improve the identification of high-risk patients in need of more aggressive therapeutic interventions.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                METALU
                Metabolites
                Metabolites
                MDPI AG
                2218-1989
                November 2021
                October 21 2021
                : 11
                : 11
                : 719
                Article
                10.3390/metabo11110719
                34822377
                c4af55ae-f216-4e3f-85c7-6aa4a26f7d09
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article