Search for authorsSearch for similar articles
14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Green tea polyphenols (GTPs) exhibit beneficial effects towards obesity and intestinal inflammation; however, the mechanisms and association with gut microbiota are unclear. We examined the role of the gut microbiota of GTPs treatment for obesity and inflammation. Canines were fed either a normal diet or high-fat diet with low (0.48% g/kg), medium (0.96% g/kg), or high (1.92% g/kg), doses of GTPs for 18 weeks. GTPs decreased the relative abundance of Bacteroidetes and Fusobacteria and increased the relative abundance of Firmicutes as revealed by 16S rRNA gene sequencing analysis. The relative proportion of Acidaminococcus, Anaerobiospirillum, Anaerovibrio, Bacteroides, Blautia, Catenibactetium, Citrobacter, Clostridium, Collinsella, and Escherichia were significantly associated with GTPs-induced weight loss. GTPs significantly (P<.01) decreased expression levels of inflammatory cytokines, including TNF-α, IL-6, and IL-1β, and inhibited induction of the TLR4 signaling pathway compared with high-fat diet. We show that the therapeutic effects of GTPs correspond with changes in gut microbiota and intestinal inflammation, which may be related to the anti-inflammatory and anti-obesity mechanisms of GTPs.

          Related collections

          Author and article information

          Journal
          The Journal of Nutritional Biochemistry
          The Journal of Nutritional Biochemistry
          Elsevier BV
          09552863
          April 2020
          April 2020
          : 78
          : 108324
          Article
          10.1016/j.jnutbio.2019.108324
          32004926
          c4bd2d7a-d28d-49de-8794-ce8e36ef0a72
          © 2020

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article