• Record: found
  • Abstract: found
  • Article: found
Is Open Access

Allosteric Modulation of the Activity of the Glucagon-like Peptide-1 (GLP-1) Metabolite GLP-1 9–36 Amide at the GLP-1 Receptor

1 , 2 , 1 , 1 , *


Public Library of Science

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      Glucagon-like peptide-1 (GLP-1) released from intestinal L cells in response to nutrients has many physiological effects but particularly enhances glucose-dependent insulin release through the GLP-1 receptor (GLP-1R). GLP-1 7–36 amide, the predominant circulating active form of GLP-1, is rapidly truncated by dipeptidyl peptidase-4 to GLP-1 9–36 amide, which is generally considered inactive. Given its physiological roles, the GLP-1R is targeted for treatment of type 2 diabetes. Recently ‘compound 2’ has been described as both an agonist and positive allosteric modulator of GLP-1 7–36 amide affinity, but not potency, at the GLP-1R. Importantly, we demonstrated previously that exendin 9–39, generally considered a GLP-1R antagonist, enhances compound 2 efficacy (or vice versa) at the GLP-1R. Given that GLP-1 9–36 amide is the major circulating form of GLP-1 post-prandially and is a low affinity weak partial agonist or antagonist at the GLP-1R, we investigated interaction between this metabolite and compound 2 in a cell line with recombinant expression of the human GLP-1R and the rat insulinoma cell line, INS-1E, with native expression of the GLP-1R. We show compound 2 markedly enhances efficacy and potency of GLP-1 9–36 amide for key cellular responses including AMP generation, Ca2+ signaling and extracellular signal-regulated kinase. Thus, metabolites of peptide hormones including GLP-1 that are often considered inactive may provide a means of manipulating key aspects of receptor function and a novel therapeutic strategy.

      Related collections

      Most cited references 33

      • Record: found
      • Abstract: found
      • Article: not found

      The physiology of glucagon-like peptide 1.

      Glucagon-like peptide 1 (GLP-1) is a 30-amino acid peptide hormone produced in the intestinal epithelial endocrine L-cells by differential processing of proglucagon, the gene which is expressed in these cells. The current knowledge regarding regulation of proglucagon gene expression in the gut and in the brain and mechanisms responsible for the posttranslational processing are reviewed. GLP-1 is released in response to meal intake, and the stimuli and molecular mechanisms involved are discussed. GLP-1 is extremely rapidly metabolized and inactivated by the enzyme dipeptidyl peptidase IV even before the hormone has left the gut, raising the possibility that the actions of GLP-1 are transmitted via sensory neurons in the intestine and the liver expressing the GLP-1 receptor. Because of this, it is important to distinguish between measurements of the intact hormone (responsible for endocrine actions) or the sum of the intact hormone and its metabolites, reflecting the total L-cell secretion and therefore also the possible neural actions. The main actions of GLP-1 are to stimulate insulin secretion (i.e., to act as an incretin hormone) and to inhibit glucagon secretion, thereby contributing to limit postprandial glucose excursions. It also inhibits gastrointestinal motility and secretion and thus acts as an enterogastrone and part of the "ileal brake" mechanism. GLP-1 also appears to be a physiological regulator of appetite and food intake. Because of these actions, GLP-1 or GLP-1 receptor agonists are currently being evaluated for the therapy of type 2 diabetes. Decreased secretion of GLP-1 may contribute to the development of obesity, and exaggerated secretion may be responsible for postprandial reactive hypoglycemia.
        • Record: found
        • Abstract: found
        • Article: not found

        Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans.

        Using specific radioimmunoassays, we studied the occurrence of amidated and glycine-extended glucagon-like peptide I (GLP-I) molecules in the human small intestine and pancreas and in the circulation system in response to a breakfast meal. Through gel permeation chromatography of extracts of the human pancreas (n = 5), we found that 71% of the GLP-I immunoreactivity eluted as a large molecule corresponding to the major proglucagon fragment, 24% corresponded to GLP-I 1-36 amide, and 5% to GLP-I 1-37. By gel permeation chromatography of extracts of human small intestine (n = 6), we found that all immunoreactivity eluted in one peak at the common elution position of the two insulin-releasing peptides, GLP-I 7-36 amide and GLP-I 7-37. Of the GLP-I immunoreactivity, 80% corresponded to GLP-I 7-36 amide and 20% to GLP-I 7-37. The mean concentrations of amidated GLP-I and glycine-extended GLP-I in fasting plasma were 7 +/- 1 and 6 +/- 1 pM, respectively (n = 6). In response to a breakfast meal, the concentration of amidated GLP-I rose significantly amounting to 41 +/- 5 pM 90 min after the meal ingestion, whereas the concentration of glycine-extended GLP-I only rose slightly to a maximum of 10 +/- 1 pM. Thus, both amidated and glycine-extended GLP-I molecules are produced in the small intestine and in the pancreas in humans. Both amidated and glycine-extended GLP-I are measurable in fasting plasma.(ABSTRACT TRUNCATED AT 250 WORDS)
          • Record: found
          • Abstract: found
          • Article: not found

          Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells.

          Rat insulinoma-derived INS-1 cells constitute a widely used beta-cell surrogate. However, due to their nonclonal nature, INS-1 cells are heterogeneous and are not stable over extended culture periods. We have isolated clonal INS-1E cells from parental INS-1 based on both their insulin content and their secretory responses to glucose. Here we describe the stable differentiated INS-1E beta-cell phenotype over 116 passages (no. 27-142) representing a 2.2-yr continuous follow-up. INS-1E cells can be safely cultured and used within passages 40-100 with average insulin contents of 2.30 +/- 0.11 microg/million cells. Glucose-induced insulin secretion was dose-related and similar to rat islet responses. Secretion saturated with a 6.2-fold increase at 15 mm glucose, showing a 50% effective concentration of 10.4 mm. Secretory responses to amino acids and sulfonylurea were similar to those of islets. Moreover, INS-1E cells retained the amplifying pathway, as judged by glucose-evoked augmentation of insulin release in a depolarized state. Regarding metabolic parameters, INS-1E cells exhibited glucose dose-dependent elevations of NAD(P)H, cytosolic Ca(2+), and mitochondrial Ca(2+) levels. In contrast, mitochondrial membrane potential, ATP levels, and cell membrane potential were all fully activated by 7.5 mm glucose. Using the perforated patch clamp technique, 7.5 and 15 mm glucose elicited electrical activity to a similar degree. A K(ATP) current was identified in whole cell voltage clamp using diazoxide and tolbutamide. As in native beta-cells, tolbutamide induced electrical activity, indicating that the K(ATP)conductance is important in setting the resting potential. Therefore, INS-1E cells represent a stable and valuable beta-cell model.

            Author and article information

            [1 ]Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
            [2 ]Department of Biochemistry, Tianjin Medical University, Tianjin, China
            Indiana University School of Medicine, United States of America
            Author notes

            Competing Interests: The authors have declared that no competing interests exist.

            Conceived and designed the experiments: GBW NL JL. Performed the experiments: NL JL. Analyzed the data: GBW NL JL. Wrote the paper: GBW NL JL.

            Role: Editor
            PLoS One
            PLoS ONE
            PLoS ONE
            Public Library of Science (San Francisco, USA )
            19 October 2012
            : 7
            : 10

            This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

            Pages: 10
            This work was funded by the University of Leicester. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
            Research Article
            Molecular Cell Biology
            Signal Transduction
            Mechanisms of Signal Transduction
            Second Messenger System
            Signal Initiation
            Membrane Receptor Signaling
            Hormone Receptor Signaling
            Signaling Cascades
            Adenylyl Cyclase Signaling Cascade
            Calcium Signaling Cascade
            MAPK signaling cascades
            Signaling in Cellular Processes
            Calcium Signaling
            G-Protein Signaling
            Mitogenic Signaling
            Transmembrane Signaling
            Signaling in Selected Disciplines
            Endocrinological Signaling
            Signaling Pathways
            Adenylyl Cyclase Signaling Pathway
            Calcium-Mediated Signal Transduction



            Comment on this article