20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of IRE1α-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Survival of cancer cells relies on the unfolded protein response (UPR) to resist stress triggered by the accumulation of misfolded proteins within the endoplasmic reticulum (ER). The IRE1α-XBP1 pathway, a key branch of the UPR, is activated in many cancers. Here, we show that the expression of both mature and spliced forms of XBP1 ( XBP1s) is up-regulated in acute myeloid leukemia (AML) cell lines and AML patient samples. IRE1α RNase inhibitors [MKC-3946, 2-hydroxy-1-naphthaldehyde (HNA), STF-083010 and toyocamycin] blocked XBP1 mRNA splicing and exhibited cytotoxicity against AML cells. IRE1α inhibition induced caspase-dependent apoptosis and G1 cell cycle arrest at least partially by regulation of Bcl-2 family proteins, G1 phase controlling proteins (p21 cip1, p27 kip1 and cyclin D1), as well as chaperone proteins. Xbp1 deleted murine bone marrow cells were resistant to growth inhibition by IRE1α inhibitors. Combination of HNA with either bortezomib or AS 2O 3 was synergistic in AML cytotoxicity associated with induction of p-JNK and reduction of p-PI3K and p-MAPK. Inhibition of IRE1α RNase activity increased expression of many miRs in AML cells including miR-34a. Inhibition of miR-34a conferred cellular resistance to HNA. Our results strongly suggest that targeting IRE1α driven pro-survival pathways represent an exciting therapeutic approach for the treatment of AML.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          XBP1 Promotes Triple Negative Breast Cancer By Controlling the HIF1 α Pathway

          Cancer cells induce a set of adaptive response pathways to survive in the face of stressors due to inadequate vascularization 1 . One such adaptive pathway is the unfolded protein (UPR) or endoplasmic reticulum (ER) stress response mediated in part by the ER-localized transmembrane sensor IRE1 2 and its substrate XBP1 3 . Previous studies report UPR activation in various human tumors 4-6 , but XBP1's role in cancer progression in mammary epithelial cells is largely unknown. Triple negative breast cancer (TNBC), a form of breast cancer in which tumor cells do not express the genes for estrogen receptor, progesterone receptor, and Her2/neu, is a highly aggressive malignancy with limited treatment options 7, 8 . Here, we report that XBP1 is activated in TNBC and plays a pivotal role in the tumorigenicity and progression of this human breast cancer subtype. In breast cancer cell line models, depletion of XBP1 inhibited tumor growth and tumor relapse and reduced the CD44high/CD24low population. Hypoxia-inducing factor (HIF)1α is known to be hyperactivated in TNBCs 9, 10 . Genome-wide mapping of the XBP1 transcriptional regulatory network revealed that XBP1 drives TNBC tumorigenicity by assembling a transcriptional complex with HIF1α that regulates the expression of HIF1α targets via the recruitment of RNA polymerase II. Analysis of independent cohorts of patients with TNBC revealed a specific XBP1 gene expression signature that was highly correlated with HIF1α and hypoxia-driven signatures and that strongly associated with poor prognosis. Our findings reveal a key function for the XBP1 branch of the UPR in TNBC and imply that targeting this pathway may offer alternative treatment strategies for this aggressive subtype of breast cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prognostically useful gene-expression profiles in acute myeloid leukemia.

            In patients with acute myeloid leukemia (AML) a combination of methods must be used to classify the disease, make therapeutic decisions, and determine the prognosis. However, this combined approach provides correct therapeutic and prognostic information in only 50 percent of cases. We determined the gene-expression profiles in samples of peripheral blood or bone marrow from 285 patients with AML using Affymetrix U133A GeneChips containing approximately 13,000 unique genes or expression-signature tags. Data analyses were carried out with Omniviz, significance analysis of microarrays, and prediction analysis of microarrays software. Statistical analyses were performed to determine the prognostic significance of cases of AML with specific molecular signatures. Unsupervised cluster analyses identified 16 groups of patients with AML on the basis of molecular signatures. We identified the genes that defined these clusters and determined the minimal numbers of genes needed to identify prognostically important clusters with a high degree of accuracy. The clustering was driven by the presence of chromosomal lesions (e.g., t(8;21), t(15;17), and inv(16)), particular genetic mutations (CEBPA), and abnormal oncogene expression (EVI1). We identified several novel clusters, some consisting of specimens with normal karyotypes. A unique cluster with a distinctive gene-expression signature included cases of AML with a poor treatment outcome. Gene-expression profiling allows a comprehensive classification of AML that includes previously identified genetically defined subgroups and a novel cluster with an adverse prognosis. Copyright 2004 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of the unfolded protein response in tumour development: friend or foe?

              Having accumulated mutations that overcome cell-cycle and apoptotic checkpoints, the main obstacle to survival faced by a cancer cell is the restricted supply of nutrients and oxygen. These conditions impinge on protein folding in the endoplasmic reticulum and activate a largely cytoprotective signalling pathway called the unfolded protein response. Prolonged activation of this response can, however, terminate in apoptosis. Recent delineation of the components of this response, coupled with several clinical studies, indicate that it is uniquely poised to have a role in regulating the balance between cancer cell death, dormancy and aggressive growth, as well as altering the sensitivity of solid tumours to chemotherapeutic agents.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                5 April 2016
                25 February 2016
                : 7
                : 14
                : 18736-18749
                Affiliations
                1 Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
                2 Department of Surgery, University of California San Francisco, San Francisco, CA, USA
                3 Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
                4 Department of Hematology and Respiratory Medicine, Kochi University, Nankoku, Kochi, Japan
                5 Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
                6 Cancer Science Institute of Singapore, National University of Singapore, Singapore
                7 Department of Hematology and Oncology, University Hospital Halle, Halle, Germany
                8 Department of Medicine, Hematology and Oncology, University of Muenster, Muenster, Germany
                9 Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
                Author notes
                Correspondence to: Haibo Sun, Haibo.Sun@ 123456ucsf.edu
                Article
                7702
                10.18632/oncotarget.7702
                4951325
                26934650
                c4e6a863-2d24-4798-9f66-ae1c812a50bc
                Copyright: © 2016 Sun et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 July 2015
                : 29 January 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                ire1,er stress,xbp1,unfolded protein response,micro rna
                Oncology & Radiotherapy
                ire1, er stress, xbp1, unfolded protein response, micro rna

                Comments

                Comment on this article