4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Engineering biological structures of prescribed shape using self-assembling multicellular systems

      , , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Self-assembly is a fundamental process that drives structural organization in both inanimate and living systems. It is in the course of self-assembly of cells and tissues in early development that the organism and its parts eventually acquire their final shape. Even though developmental patterning through self-assembly is under strict genetic control it is clear that ultimately it is physical mechanisms that bring about the complex structures. Here we show, both experimentally and by using computer simulations, how tissue liquidity can be used to build tissue constructs of prescribed geometry in vitro. Spherical aggregates containing many thousands of cells, which form because of tissue liquidity, were implanted contiguously into biocompatible hydrogels in circular geometry. Depending on the properties of the gel, upon incubation, the aggregates either fused into a toroidal 3D structure or their constituent cells dispersed into the surrounding matrix. The model simulations, which reproduced the experimentally observed shapes, indicate that the control parameter of structure evolution is the aggregate-gel interfacial tension. The model-based analysis also revealed that the observed toroidal structure represents a metastable state of the cellular system, whose lifetime depends on the magnitude of cell-cell and cell-matrix interactions. Thus, these constructs can be made long-lived. We suggest that spherical aggregates composed of organ-specific cells may be used as "bio-ink" in the evolving technology of organ printing.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue engineering--current challenges and expanding opportunities.

          Tissue engineering can be used to restore, maintain, or enhance tissues and organs. The potential impact of this field, however, is far broader-in the future, engineered tissues could reduce the need for organ replacement, and could greatly accelerate the development of new drugs that may cure patients, eliminating the need for organ transplants altogether.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organ printing: computer-aided jet-based 3D tissue engineering.

            Tissue engineering technology promises to solve the organ transplantation crisis. However, assembly of vascularized 3D soft organs remains a big challenge. Organ printing, which we define as computer-aided, jet-based 3D tissue-engineering of living human organs, offers a possible solution. Organ printing involves three sequential steps: pre-processing or development of "blueprints" for organs; processing or actual organ printing; and postprocessing or organ conditioning and accelerated organ maturation. A cell printer that can print gels, single cells and cell aggregates has been developed. Layer-by-layer sequentially placed and solidified thin layers of a thermo-reversible gel could serve as "printing paper". Combination of an engineering approach with the developmental biology concept of embryonic tissue fluidity enables the creation of a new rapid prototyping 3D organ printing technology, which will dramatically accelerate and optimize tissue and organ assembly.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A tough biodegradable elastomer.

              Biodegradable polymers have significant potential in biotechnology and bioengineering. However, for some applications, they are limited by their inferior mechanical properties and unsatisfactory compatibility with cells and tissues. A strong, biodegradable, and biocompatible elastomer could be useful for fields such as tissue engineering, drug delivery, and in vivo sensing. We designed, synthesized, and characterized a tough biodegradable elastomer from biocompatible monomers. This elastomer forms a covalently crosslinked, three-dimensional network of random coils with hydroxyl groups attached to its backbone. Both crosslinking and the hydrogen-bonding interactions between the hydroxyl groups likely contribute to the unique properties of the elastomer. In vitro and in vivo studies show that the polymer has good biocompatibility. Polymer implants under animal skin are absorbed completely within 60 days with restoration of the implantation sites to their normal architecture.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 02 2004
                March 02 2004
                February 23 2004
                March 02 2004
                : 101
                : 9
                : 2864-2869
                Article
                10.1073/pnas.0400164101
                365711
                14981244
                c515e4d1-ce19-43ba-a305-e4117c3e94c6
                © 2004
                History

                Comments

                Comment on this article