35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human RSPO1/R-spondin1 Is Expressed during Early Ovary Development and Augments β-Catenin Signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human testis development starts from around 42 days post conception with a transient wave of SRY expression followed by up-regulation of testis specific genes and a distinct set of morphological, paracrine and endocrine events. Although anatomical changes in the ovary are less marked, a distinct sub-set of ovary specific genes are also expressed during this time. The furin-domain containing peptide R-spondin1 (RSPO1) has recently emerged as an important regulator of ovary development through up-regulation of the WNT/β-catenin pathway to oppose testis formation. Here, we show that RSPO1 is upregulated in the ovary but not in the testis during critical early stages of gonad development in humans (between 6–9 weeks post conception), whereas the expression of the related genes WNT4 and CTNNB1 (encoding β catenin) is not significantly different between these tissues. Furthermore, reduced R-spondin1 function in the ovotestis of an individual (46,XX) with a RSPO1 mutation leads to reduced β-catenin protein and WNT4 mRNA levels, consistent with down regulation of ovarian pathways. Transfection of wild-type RSPO1 cDNA resulted in weak dose-dependent activation of a β-catenin responsive TOPFLASH reporter (1.8 fold maximum), whereas co-transfection of CTNNB1 (encoding β-catenin) with RSPO1 resulted in dose-dependent synergistic augmentation of this reporter (approximately 10 fold). Furthermore, R-spondin1 showed strong nuclear localization in several different cell lines. Taken together, these data show that R-spondin1 is upregulated during critical stages of early human ovary development and may function as a tissue-specific amplifier of β-catenin signaling to oppose testis determination.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer.

            The mammalian Y chromosome acts as a dominant male determinant as a result of the action of a single gene, Sry, whose role in sex determination is to initiate testis rather than ovary development from early bipotential gonads. It does so by triggering the differentiation of Sertoli cells from supporting cell precursors, which would otherwise give follicle cells. The related autosomal gene Sox9 is also known from loss-of-function mutations in mice and humans to be essential for Sertoli cell differentiation; moreover, its abnormal expression in an XX gonad can lead to male development in the absence of Sry. These genetic data, together with the finding that Sox9 is upregulated in Sertoli cell precursors just after SRY expression begins, has led to the proposal that Sox9 could be directly regulated by SRY. However, the mechanism by which SRY action might affect Sox9 expression was not understood. Here we show that SRY binds to multiple elements within a Sox9 gonad-specific enhancer in mice, and that it does so along with steroidogenic factor 1 (SF1, encoded by the gene Nr5a1 (Sf1)), an orphan nuclear receptor. Mutation, co-transfection and sex-reversal studies all point to a feedforward, self-reinforcing pathway in which SF1 and SRY cooperatively upregulate Sox9 and then, together with SF1, SOX9 also binds to the enhancer to help maintain its own expression after that of SRY has ceased. Our results open up the field, permitting further characterization of the molecular mechanisms regulating sex determination and how they have evolved, as well as how they fail in cases of sex reversal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation.

              In mammals, the transcription factor SRY, encoded by the Y chromosome, is normally responsible for triggering the indifferent gonads to develop as testes rather than ovaries. However, testis differentiation can occur in its absence. Here we demonstrate in the mouse that a single factor, the forkhead transcriptional regulator FOXL2, is required to prevent transdifferentiation of an adult ovary to a testis. Inducible deletion of Foxl2 in adult ovarian follicles leads to immediate upregulation of testis-specific genes including the critical SRY target gene Sox9. Concordantly, reprogramming of granulosa and theca cell lineages into Sertoli-like and Leydig-like cell lineages occurs with testosterone levels comparable to those of normal XY male littermates. Our results show that maintenance of the ovarian phenotype is an active process throughout life. They might also have important medical implications for the understanding and treatment of some disorders of sexual development in children and premature menopause in women.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                28 January 2011
                : 6
                : 1
                : e16366
                Affiliations
                [1 ]Medical Genetics, Molecular Medicine Department, S. Camillo-Forlanini Hospital, Sapienza–University of Rome, Rome, Italy
                [2 ]Developmental Endocrinology Research Group, UCL Institute of Child Health, London, United Kingdom
                [3 ]Experimental Medicine Department, Sapienza–University of Rome, Rome, Italy
                [4 ]Neural Development Unit, UCL Institute of Child Health, London, United Kingdom
                The National Institute of Diabetes and Digestive and Kidney Diseases, United States of America
                Author notes

                Conceived and designed the experiments: ST FM LL MCM SM PG JCA. Performed the experiments: ST FM LL. Analyzed the data: ST FM LL JCA. Contributed reagents/materials/analysis tools: DG PG. Wrote the paper: ST JCA.

                Article
                PONE-D-10-03155
                10.1371/journal.pone.0016366
                3030573
                21297984
                c528cdd7-10ae-4ced-b89e-0fc6ce9d65a2
                Tomaselli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 October 2010
                : 17 December 2010
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Developmental Biology
                Molecular Development
                Signaling
                Organism Development
                Organogenesis
                Cell Fate Determination
                Embryology
                Genetics
                Genetic Mutation
                Molecular Cell Biology
                Cellular Types
                Germ Cells
                Signal Transduction
                Signaling Cascades
                WNT Signaling Cascade
                Signaling Pathways
                Catenin Signal Transduction
                Medicine
                Anatomy and Physiology
                Reproductive System
                Genital Anatomy
                Reproductive Physiology
                Sexual Reproduction
                Endocrinology
                Pediatric Endocrinology
                Reproductive Endocrinology
                Obstetrics and Gynecology
                Female Genital Diseases
                Pediatrics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article