• Record: found
  • Abstract: found
  • Article: not found

Feasibility of real-time magnetic resonance-guided stent-graft placement in a swine model of descending aortic dissection.

European Heart Journal

Swine, Sus scrofa, Stents, Magnetic Resonance Angiography, Feasibility Studies, Blood Vessel Prosthesis, surgery, Aortic Aneurysm, Thoracic, Animals, Aneurysm, Dissecting

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      To evaluate the pre-clinical feasibility of real-time magnetic resonance imaging (rtMRI) to guide stent-graft placement for experimental aortic dissection (AD) and to alleviate disadvantages of ionising radiation and nephrotoxic contrast media. Endovascular stent-graft placement for thoracic aortic disease is usually performed under X-ray guidance. The feasibility of rtMRI-guided stent-graft placement is currently not known. By using a catheter-based technique, dissections of the descending thoracic aorta were successfully created in eight domestic pigs. Subsequent implantation of commercially available, nitinol-based stent-grafts was performed entirely under rtMRI guidance. By pre-interventional MRI, the mean minimal true-lumen diameter was 0.9 (0.825-0.975) cm. rtMRI permitted not only the successful and safe device navigation within the true lumen from the iliac arteries to the thoracic aorta, but also the precise positioning and deployment of the stent-graft and safe withdrawal of the delivery catheter in seven of eight pigs. This was achieved without any other complications. After the stent-graft placement, MRI demonstrated complete obliteration of the false lumen, which was confirmed at autopsy. All stent-grafts were well expanded resulting in an increase in the size of the true-lumen diameter to 2.05 (1.925-2.1) cm (P=0.066 vs. baseline). In experimental AD, rtMRI-guided endovascular stent-graft placement is feasible and safe and has the potential for mitigating radiation and contrast-related side effects. Additionally, it allows not only pre-interventional diagnosis and detailed anatomic diagnosis, but also permits immediate post-interventional, anatomical, and functional delineation of procedure success that may serve as a baseline for future comparison during follow-up.

      Related collections

      Author and article information



      Comment on this article