14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Kingella kingae Surface Polysaccharides Promote Resistance to Neutrophil Phagocytosis and Killing

      research-article
      a , b , b , a , b ,
      (Solicited external reviewer), (Solicited external reviewer)
      mBio
      American Society for Microbiology
      Kingella kingae, capsule, exopolysaccharide, immune evasion, neutrophils

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kingella kingae is a Gram-negative commensal in the oropharynx and represents a leading cause of joint and bone infections in young children. The mechanisms by which K. kingae evades host innate immunity during pathogenesis of disease remain poorly understood. In this study, we established that the K. kingae polysaccharide capsule and exopolysaccharide function independently to protect K. kingae against reactive oxygen species (ROS) production, neutrophil phagocytosis, and antimicrobial peptides. These results demonstrate the intricacies of K. kingae innate immune evasion and provide valuable information that may facilitate development of a polysaccharide-based vaccine against K. kingae.

          ABSTRACT

          Bacterial pathogens have evolved strategies that enable them to evade neutrophil-mediated killing. The Gram-negative coccobacillus Kingella kingae is an emerging pediatric pathogen and is increasingly recognized as a common etiological agent of osteoarticular infections and bacteremia in young children. K. kingae produces a polysaccharide capsule and an exopolysaccharide, both of which are important for protection against complement-mediated lysis and are required for full virulence in an infant rat model of infection. In this study, we examined the role of the K. kingae polysaccharide capsule and exopolysaccharide in protection against neutrophil killing. In experiments with primary human neutrophils, we found that the capsule interfered with the neutrophil oxidative burst response and prevented neutrophil binding of K. kingae but had no effect on neutrophil internalization of K. kingae. In contrast, the exopolysaccharide resisted the bactericidal effects of antimicrobial peptides and efficiently blocked neutrophil phagocytosis of K. kingae. This work demonstrates that the K. kingae polysaccharide capsule and exopolysaccharide promote evasion of neutrophil-mediated killing through distinct yet complementary mechanisms, providing additional support for the K. kingae surface polysaccharides as potential vaccine antigens. In addition, these studies highlight a novel interplay between a bacterial capsule and a bacterial exopolysaccharide and reveal new properties for a bacterial exopolysaccharide, with potential applicability to other bacterial pathogens.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Endotoxin-tolerant Mice Have Mutations in Toll-like Receptor 4 (Tlr4)

          Bacterial lipopolysaccharide (LPS) provokes a vigorous, generalized proinflammatory state in the infected host. Genetic regulation of this response has been localized to the Lps locus on mouse chromosome 4, through study of the C3H/HeJ and C57BL/10ScCr inbred strains. Both C3H/HeJ and C57BL/10ScCr mice are homozygous for a mutant Lps allele (Lpsd/d ) that confers hyporesponsiveness to LPS challenge, and therefore exhibit natural tolerance to its lethal effects. Genetic and physical mapping of 1,345 backcross progeny segregating this mutant phenotype confined Lps to a 0.9-cM interval spanning 1.7 Mb. Three transcription units were identified within the candidate interval, including Toll-like receptor 4 (Tlr4), part of a protein family with members that have been implicated in LPS-induced cell signaling. C3H/HeJ mice have a point mutation within the coding region of the Tlr4 gene, resulting in a nonconservative substitution of a highly conserved proline by histidine at codon 712, whereas C57BL/ 10ScCr mice exhibit a deletion of Tlr4. Identification of distinct mutations involving the same gene at the Lps locus in two different hyporesponsive inbred mouse strains strongly supports the hypothesis that altered Tlr4 function is responsible for endotoxin tolerance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides.

            The innate immune system plays a critical role in the defense of areas exposed to microorganisms. There is an increasing body of evidence indicating that antimicrobial peptides and proteins (APs) are one of the most important weapons of this system and that they make up the protective front for the respiratory tract. On the other hand, it is known that pathogenic organisms have developed countermeasures to resist these agents such as reducing the net negative charge of the bacterial membranes. Here we report the characterization of a novel mechanism of resistance to APs that is dependent on the bacterial capsule polysaccharide (CPS). Klebsiella pneumoniae CPS mutant was more sensitive than the wild type to human neutrophil defensin 1, beta-defensin 1, lactoferrin, protamine sulfate, and polymyxin B. K. pneumoniae lipopolysaccharide O antigen did not play an important role in AP resistance, and CPS was the only factor conferring protection against polymyxin B in strains lacking O antigen. In addition, we found a significant correlation between the amount of CPS expressed by a given strain and the resistance to polymyxin B. We also showed that K. pneumoniae CPS mutant bound more polymyxin B than the wild-type strain with a concomitant increased in the self-promoted pathway. Taken together, our results suggest that CPS protects bacteria by limiting the interaction of APs with the surface. Finally, we report that K. pneumoniae increased the amount of CPS and upregulated cps transcription when grown in the presence of polymyxin B and lactoferrin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toll-like receptor function and signaling.

              Mammals sense pathogen invasion through pattern-recognition receptors. A group of transmembrane proteins, Toll-like receptors (TLRs), play critical roles as pattern-recognition receptors. They are mainly expressed on antigen-presenting cells, such as macrophages or dendritic cells, and their signaling activates antigen-presenting cells to provoke innate immunity and to establish adaptive immunity. Each TLR has common effects, such as inflammatory cytokine induction or upregulation of costimulatory molecule expression, but also has its specific function, exemplified by type I IFN-inducing ability. These immunoadjuvant effects are not only critical in antimicrobial immunity but are also involved in manifestations of autoimmunity. Furthermore, some TLR agonists are now promising therapeutic tools for various immune disorders, including allergy. Therefore understanding molecular mechanisms on TLRs should be quite useful in the development of therapeutic maneuvers against allergy and autoimmune diseases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Role: Solicited external reviewer
                Role: Solicited external reviewer
                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                25 June 2019
                May-Jun 2019
                : 10
                : 3
                : e00631-19
                Affiliations
                [a ]Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
                [b ]Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
                New York University
                University at Buffalo SUNY
                University of Virginia
                Author notes
                Address correspondence to Joseph W. St. Geme III, stgemeiiij@ 123456email.chop.edu .
                Article
                mBio00631-19
                10.1128/mBio.00631-19
                6593399
                31239373
                c63db9de-7920-4e73-a779-5cc16b06f2dc
                Copyright © 2019 Muñoz et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 7 May 2019
                : 22 May 2019
                Page count
                supplementary-material: 2, Figures: 6, Tables: 3, Equations: 0, References: 47, Pages: 14, Words: 8038
                Funding
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: R01AI121015
                Award Recipient :
                Funded by: National Science Foundation (NSF), https://doi.org/10.13039/100000001;
                Award ID: DGE-1321851
                Award Recipient :
                Categories
                Research Article
                Host-Microbe Biology
                Custom metadata
                May/June 2019

                Life sciences
                kingella kingae,capsule,exopolysaccharide,immune evasion,neutrophils
                Life sciences
                kingella kingae, capsule, exopolysaccharide, immune evasion, neutrophils

                Comments

                Comment on this article