80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CCl 4-induced hepatotoxicity: protective effect of rutin on p53, CYP2E1 and the antioxidative status in rat

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Rutin is a polyphenolic natural flavonoid which possesses antioxidant and anticancer activity. In the present study the hepatoprotective effect of rutin was evaluated against carbon tetrachloride (CCl 4)-induced liver injuries in rats.

          Methods and materials

          24 Sprague–Dawley male rats were equally divided into 4 groups for the assessment of hepatoprotective potential of rutin. Rats of group I (control) received only vehicles; 1 ml/kg bw of saline (0.85%) and olive oil (3 ml/kg) and had free access to food and water. Rats of group II, III and IV were treated with CCl 4 (30% in olive oil, 3 ml/kg bw) via the intraperitoneal route twice a week for four weeks. The rutin at the doses of 50 and 70 mg/kg were administered intragastrically after 48 h of CCl 4 treatment to group III and IV, respectively. Protective effect of rutin on serum enzyme level, lipid profile, activities of antioxidant enzymes and molecular markers were calculated in CCl 4-induced hepatotoxicity in rat.

          Results

          Rutin showed significant protection with the depletion of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transpeptidase (γ-GT) in serum as was raised by the induction of CCl 4. Concentration of serum triglycerides, total cholesterol and low density lipoproteins was increased while high-density lipoprotein was decreased with rutin in a dose dependent manner. Activity level of endogenous liver antioxidant enzymes; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSHpx), glutathione-S-transferase (GST) and glutathione reductase (GSR) and glutathione (GSH) contents were increased while lipid peroxidation (TBARS) was decreased dose dependently with rutin. Moreover, increase in DNA fragmentation and oxo8dG damages while decrease in p53 and CYP 2E1 expression induced with CCl 4 was restored with the treatment of rutin.

          Conclusion

          From these results, it is suggested that rutin possesses hepatoprotective properties.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model.

          The use of many halogenated alkanes such as carbon tetrachloride (CCl4), chloroform (CHCl3) or iodoform (CHI3), has been banned or severely restricted because of their distinct toxicity. Yet CCl4 continues to provide an important service today as a model substance to elucidate the mechanisms of action of hepatotoxic effects such as fatty degeneration, fibrosis, hepatocellular death, and carcinogenicity. In a matter of dose,exposure time, presence of potentiating agents, or age of the affected organism, regeneration can take place and lead to full recovery from liver damage. CCl4 is activated by cytochrome (CYP)2E1, CYP2B1 or CYP2B2, and possibly CYP3A, to form the trichloromethyl radical, CCl3*. This radical can bind to cellular molecules (nucleic acid, protein, lipid), impairing crucial cellular processes such as lipid metabolism, with the potential outcome of fatty degeneration (steatosis). Adduct formation between CCl3* and DNA is thought to function as initiator of hepatic cancer. This radical can also react with oxygen to form the trichloromethylperoxy radical CCl3OO*, a highly reactive species. CCl3OO* initiates the chain reaction of lipid peroxidation, which attacks and destroys polyunsaturated fatty acids, in particular those associated with phospholipids. This affects the permeabilities of mitochondrial, endoplasmic reticulum, and plasma membranes, resulting in the loss of cellular calcium sequestration and homeostasis, which can contribute heavily to subsequent cell damage. Among the degradation products of fatty acids are reactive aldehydes, especially 4-hydroxynonenal, which bind easily to functional groups of proteins and inhibit important enzyme activities. CCl4 intoxication also leads to hypomethylation of cellular components; in the case of RNA the outcome is thought to be inhibition of protein synthesis, in the case of phospholipids it plays a role in the inhibition of lipoprotein secretion. None of these processes per se is considered the ultimate cause of CCl4-induced cell death; it is by cooperation that they achieve a fatal outcome, provided the toxicant acts in a high single dose, or over longer periods of time at low doses. At the molecular level CCl4 activates tumor necrosis factor (TNF)alpha, nitric oxide (NO), and transforming growth factors (TGF)-alpha and -beta in the cell, processes that appear to direct the cell primarily toward (self-)destruction or fibrosis. TNFalpha pushes toward apoptosis, whereas the TGFs appear to direct toward fibrosis. Interleukin (IL)-6, although induced by TNFalpha, has a clearly antiapoptotic effect, and IL-10 also counteracts TNFalpha action. Thus, both interleukins have the potential to initiate recovery of the CCl4-damaged hepatocyte. Several of the above-mentioned toxication processes can be specifically interrupted with the use of antioxidants and mitogens, respectively, by restoring cellular methylation, or by preserving calcium sequestration. Chemicals that induce cytochromes that metabolize CCl4, or delay tissue regeneration when co-administered with CCl4 will potentiate its toxicity thoroughly, while appropriate CYP450 inhibitors will alleviate much of the toxicity. Oxygen partial pressure can also direct the course of CCl4 hepatotoxicity. Pressures between 5 and 35 mmHg favor lipid peroxidation, whereas absence of oxygen, as well as a partial pressure above 100 mmHg, both prevent lipid peroxidation entirely. Consequently, the location of CCl4-induced damage mirrors the oxygen gradient across the liver lobule. Mixed halogenated methanes and ethanes, found as so-called disinfection byproducts at low concentration in drinking water, elicit symptoms of toxicity very similar to carbon tetrachloride, including carcinogenicity.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Carbon tetrachloride hepatotoxicity: an example of lethal cleavage.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy.

              Whole tissue reduced glutathione (GSH) concentration was found to be lowest in rabbit renal inner medulla and progressively higher in outer medulla and cortex. Activities of cytosolic glutathione reductase in inner medulla and outer medulla were similar, and each was only approximately 50% of that of cortex. Whole tissue and microsomal gamma-glutamyl transpeptidase activities were high in cortex and outer medulla but were low in inner medulla. Cytosolic activity of selenium-dependent glutathione peroxidase ( GPx -I) was similar in both outer medulla and inner medulla but was only 50% of that of cortex. Activity of cytosolic selenium-independent glutathione peroxidase ( GPx -II) was highest in cortex and lowest in inner medulla (approximately 15% of cortex and approximately 50% of outer medulla). Cytosolic glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene as substrate was high in all three regions of kidney. With 1,2-dichloro-4-nitrobenzene and 1,2-epoxy-(4-nitrophenoxy)propane as substrates, cytosolic glutathione S-transferase activities were very low in cortex, outer medulla, and inner medulla. Microsomal activities of glutathione reductase, GPx -I, GPx -II and glutathione S-transferases were much lower than activities of corresponding cytosolic enzymes. Activities of the glutathione peroxidases in renal inner medulla would hence be expected to cause little interference to prostaglandin endoperoxide synthetase mediated cooxidative activation of paracetamol. It has been demonstrated that the paracetamol metabolite can react rapidly with GSH, forming not only glutathione conjugate but also paracetamol itself and oxidized glutathione. Low GSH concentrations, as well as low activities of glutathione reductase, GPx -I, GPx -II, and gamma-glutamyl transpeptidase, may therefore render the inner medullary region of kidney particularly vulnerable to paracetamol-related analgesic nephropathy.
                Bookmark

                Author and article information

                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central
                1472-6882
                2012
                8 October 2012
                : 12
                : 178
                Affiliations
                [1 ]Department of Biotechnology, Faculty of Biological Sciences, University of Science and Technology Bannu, Khyber Pakhtunkhwa, Pakistan
                [2 ]Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, Islamabad, Pakistan
                [3 ]Botanical Science Divisions, Pakistan Museum of Natural History, Islamabad, Pakistan
                Article
                1472-6882-12-178
                10.1186/1472-6882-12-178
                3519517
                23043521
                c6d2b3fe-037e-4d31-bd96-665276d10688
                Copyright ©2012 Khan et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 August 2012
                : 28 September 2012
                Categories
                Research Article

                Complementary & Alternative medicine
                cyp 2e1,rutin,antioxidant enzymes,hepatotoxicity,p53
                Complementary & Alternative medicine
                cyp 2e1, rutin, antioxidant enzymes, hepatotoxicity, p53

                Comments

                Comment on this article