Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Composting and green technologies for remediation of phthalate (PAE)-contaminated soil: Current status and future perspectives

      , , , ,
      Chemosphere
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: not found

          Endocrine-disrupting chemicals: an Endocrine Society scientific statement.

          There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor gamma, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human exposure to phthalates via consumer products.

            Phthalate exposures in the general population and in subpopulations are ubiquitous and widely variable. Many consumer products contain specific members of this family of chemicals, including building materials, household furnishings, clothing, cosmetics, pharmaceuticals, nutritional supplements, medical devices, dentures, children's toys, glow sticks, modelling clay, food packaging, automobiles, lubricants, waxes, cleaning materials and insecticides. Consumer products containing phthalates can result in human exposures through direct contact and use, indirectly through leaching into other products, or general environmental contamination. Historically, the diet has been considered the major source of phthalate exposure in the general population, but all sources, pathways, and their relative contributions to human exposures are not well understood. Medical devices containing di-(2-ethylhexyl) phthalate are a source of significant exposure in a susceptible subpopulation of individuals. Cosmetics, personal care products, pharmaceuticals, nutritional supplements, herbal remedies and insecticides, may result in significant but poorly quantified human exposures to dibutyl phthalate, diethyl phthalate, or dimethyl phthalate. Oven baking of polymer clays may cause short-term, high-level inhalation exposures to higher molecular weight phthalates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices.

              Because of their large and widespread application, phthalates or phthalic acid esters (PAEs) are ubiquitous in all the environmental compartements. They have been widely detected throughout the worldwide environment. Indoor air where people spend 65-90% of their time is also highly contaminated by various PAEs released from plastics, consumer products as well as ambient suspended particulate matter. Because of their widespread application, PAEs are the most common chemicals that humans are in contact with daily. Based on various exposure mechanisms, including the ingestion of food, drinking water, dust/soil, air inhalation and dermal exposure the daily intake of PAEs may reach values as high as 70 μg/kg/day. PAEs are involved in endocrine disrupting effects, namely, upon reproductive physiology in different species of fish and mammals. They also present a variety of additional toxic effects for many other species including terrestrial and aquatic fauna and flora. Therefore, their presence in the environment has attracted considerable attention due to their potential impacts on ecosystem functioning and on public health. This paper is a synthesis of the extensive literature data on behavior, transport, fate and ecotoxicological state of PAEs in environmental matrices: air, water, sediment, sludge, wastewater, soil, and biota. First, the origins and physicochemical properties of PAEs that control the behavior, transport and fate in the environment are reviewed. Second, the compilation of data on transport and fate, adverse environmental and human health effects, legislation, restrictions, and ecotoxicological state of the environment based on PAEs is presented.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Chemosphere
                Chemosphere
                Elsevier BV
                00456535
                November 2022
                November 2022
                : 307
                : 135989
                Article
                10.1016/j.chemosphere.2022.135989
                35988768
                c6ed3ab8-b595-4396-9966-3e19c40df30a
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article