Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Persicaline, an alkaloid from Salvadora persica, inhibits proliferation and induces apoptosis and cell-cycle arrest in MCF-7 cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer is the second largest cause of mortality worldwide. Many natural bioactive chemicals generated from plants have favorable impacts on health, including cancer chemoprevention, compared to their manufactured counterparts. Persicaline, a novel sulfur-containing imidazoline alkaloid derived from Salvadora persica, has been shown to display promising antioxidant activity. In this study, the antiproliferative activity of persicaline was tested against different cancer cells using (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. The cell death mode and cell-cycle arrest were examined using flow cytometry analysis. In addition, the proapoptotic and molecular mechanism effects of persicaline against mammary MCF-7 cell line were explored. Furthermore, the impact of persicaline on apoptotic genes markers, generation of reactive oxygen species (ROS), and mitochondrial membrane potential were monitored. It was found that persicaline inhibits cell proliferation in a dose-dependent manner. Persicaline-treated MCF-7 cells also showed initiation of apoptotic events and G1 cell-cycle arrest. In addition, persicaline treatment led to an increase in ROS generation, Bax and caspase upregulation while the Bcl-2 was downregulated. Hence, for the first time, this study showed that persicaline causes G1 phase arrest and apoptosis induction in MCF-7 cells. Increased proapoptotic genes and ROS levels were required for the antiproliferative and apoptotic effects of persicaline.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Apoptosis in cancer: from pathogenesis to treatment

            Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. It is also one of the most studied topics among cell biologists. An understanding of the underlying mechanism of apoptosis is important as it plays a pivotal role in the pathogenesis of many diseases. In some, the problem is due to too much apoptosis, such as in the case of degenerative diseases while in others, too little apoptosis is the culprit. Cancer is one of the scenarios where too little apoptosis occurs, resulting in malignant cells that will not die. The mechanism of apoptosis is complex and involves many pathways. Defects can occur at any point along these pathways, leading to malignant transformation of the affected cells, tumour metastasis and resistance to anticancer drugs. Despite being the cause of problem, apoptosis plays an important role in the treatment of cancer as it is a popular target of many treatment strategies. The abundance of literature suggests that targeting apoptosis in cancer is feasible. However, many troubling questions arise with the use of new drugs or treatment strategies that are designed to enhance apoptosis and critical tests must be passed before they can be used safely in human subjects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural products as sources of new drugs over the 30 years from 1981 to 2010.

              This review is an updated and expanded version of the three prior reviews that were published in this journal in 1997, 2003, and 2007. In the case of all approved therapeutic agents, the time frame has been extended to cover the 30 years from January 1, 1981, to December 31, 2010, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2010 for all approved antitumor drugs worldwide. We have continued to utilize our secondary subdivision of a "natural product mimic" or "NM" to join the original primary divisions and have added a new designation, "natural product botanical" or "NB", to cover those botanical "defined mixtures" that have now been recognized as drug entities by the FDA and similar organizations. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, over the time frame from around the 1940s to date, of the 175 small molecules, 131, or 74.8%, are other than "S" (synthetic), with 85, or 48.6%, actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the anti-infective area being dependent on natural products and their structures. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are able to identify only one de novo combinatorial compound approved as a drug in this 30-year time frame. We wish to draw the attention of readers to the rapidly evolving recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated", and therefore we consider that this area of natural product research should be expanded significantly.
                Bookmark

                Author and article information

                Journal
                Open Chemistry
                2391-5420
                March 15 2023
                March 15 2023
                January 01 2023
                March 15 2023
                March 15 2023
                January 01 2023
                : 21
                : 1
                Affiliations
                [1 ]Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University , P.O. Box 55760 , Riyadh – 1145 , Saudi Arabia
                [2 ]Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh 11623 , Saudi Arabia
                [3 ]Department of Pharmacognosy, College of Pharmacy, King Saud University , P.O. Box 2457 , Riyadh 11451 , Saudi Arabia
                [4 ]College of Medicine, Research Center, King Saud University , P.O. Box 2925 , Riyadh 11451 , Saudi Arabia
                Article
                10.1515/chem-2022-0302
                c730e3ba-f617-4bc8-a565-c205269075d2
                © 2023

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article