12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacilli-Mediated Degradation of Xenobiotic Compounds and Heavy Metals

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Xenobiotic compounds are man-made compounds and widely used in dyes, drugs, pesticides, herbicides, insecticides, explosives, and other industrial chemicals. These compounds have been released into our soil and water due to anthropogenic activities and improper waste disposal practices and cause serious damage to aquatic and terrestrial ecosystems due to their toxic nature. The United States Environmental Protection Agency (USEPA) has listed several toxic substances as priority pollutants. Bacterial remediation is identified as an emerging technique to remove these substances from the environment. Many bacterial genera are actively involved in the degradation of toxic substances. Among the bacterial genera, the members of the genus Bacillus have a great potential to degrade or transform various toxic substances. Many Bacilli have been isolated and characterized by their ability to degrade or transform a wide range of compounds including both naturally occurring substances and xenobiotic compounds. This review describes the biodegradation potentials of Bacilli toward various toxic substances, including 4-chloro-2-nitrophenol, insecticides, pesticides, herbicides, explosives, drugs, polycyclic aromatic compounds, heavy metals, azo dyes, and aromatic acids. Besides, the advanced technologies used for bioremediation of environmental pollutants using Bacilli are also briefly described. This review will increase our understanding of Bacilli-mediated degradation of xenobiotic compounds and heavy metals.

          Related collections

          Most cited references213

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SWISS-MODEL: homology modelling of protein structures and complexes

          Abstract Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed. Recently, its functionality has been extended to the modelling of homo- and heteromeric complexes. Starting from the amino acid sequences of the interacting proteins, both the stoichiometry and the overall structure of the complex are inferred by homology modelling. Other major improvements include the implementation of a new modelling engine, ProMod3 and the introduction a new local model quality estimation method, QMEANDisCo. SWISS-MODEL is freely available at https://swissmodel.expasy.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            I-TASSER server: new development for protein structure and function predictions

            The I-TASSER server (http://zhanglab.ccmb.med.umich.edu/I-TASSER) is an online resource for automated protein structure prediction and structure-based function annotation. In I-TASSER, structural templates are first recognized from the PDB using multiple threading alignment approaches. Full-length structure models are then constructed by iterative fragment assembly simulations. The functional insights are finally derived by matching the predicted structure models with known proteins in the function databases. Although the server has been widely used for various biological and biomedical investigations, numerous comments and suggestions have been reported from the user community. In this article, we summarize recent developments on the I-TASSER server, which were designed to address the requirements from the user community and to increase the accuracy of modeling predictions. Focuses have been made on the introduction of new methods for atomic-level structure refinement, local structure quality estimation and biological function annotations. We expect that these new developments will improve the quality of the I-TASSER server and further facilitate its use by the community for high-resolution structure and function prediction.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                09 October 2020
                2020
                : 8
                : 570307
                Affiliations
                Department of Microbiology, Babasaheb Bhimrao Ambedkar University , Lucknow, India
                Author notes

                Edited by: Kunal R. Jain, Sardar Patel University, India

                Reviewed by: Kisan M. Kodam, Savitribai Phule Pune University, India; Shaohua Chen, South China Agricultural University, China

                *Correspondence: Pankaj Kumar Arora arora484@ 123456gmail.com

                This article was submitted to Bioprocess Engineering, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2020.570307
                7581956
                33163478
                c83bf09b-3c79-4777-bb7d-d57f09ee7721
                Copyright © 2020 Arora.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 June 2020
                : 27 August 2020
                Page count
                Figures: 9, Tables: 2, Equations: 0, References: 214, Pages: 28, Words: 18054
                Categories
                Bioengineering and Biotechnology
                Review

                4-chloro-2-nitrophenol,naproxen,polycyclic aromatic hydrocarbons,cypermethrin,ibuprofen,bacillus

                Comments

                Comment on this article