6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          HUMAN ALTERATION OF THE GLOBAL NITROGEN CYCLE: SOURCES AND CONSEQUENCES

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological responses of forest trees to heat and drought.

            The heat wave of summer 2003 was the largest and the most persistent ever experienced in Central Europe and has fuelled concern about the effects of climate change on European ecosystems. Since forests constitute the most important European ecosystems, in this review article we assess current knowledge on the effects of heat and drought on key metabolic processes for growth and productivity of forest trees. In particular, the general consequences of heat and drought on (1) photosynthesis and respiration at the cellular and community level, and (2) on nutrient uptake, partitioning and competition for nutrients are summarized. The latter are a major sink for photosynthetic energy and, therefore, are indirectly but strongly connected to the performance of photosynthesis. In addition, the interaction of heat and drought with stress compensation mechanisms and emission of biogenic volatile organic compounds (BVOC) are discussed, since these processes are directly connected to carbon metabolism. Effects on the emission of BVOC are also included because they constitute an important feedback mechanism on ozone formation and, thus, on atmospheric pollution. As far as available, data collected during the 2003 heat wave are included and discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physiological and physicochemical controls on foliar volatile organic compound emissions.

              Plant leaves emit a broad spectrum of organic compounds that typically play multiple roles in plant protection. Furthermore, most of these compounds actively participate in tropospheric chemistry. There has been rapid progress in understanding how the emission of volatiles is regulated, mostly focusing on the biochemical controls over compound production. However, physicochemical characteristics such as low volatility or diffusion can also control the emissions and interact with physiological limitations. In particular, non-specific leaf storage of less volatile compounds smooths the emission responses to fluctuating environmental conditions, and diffusion through stomata leads to conspicuous emission bursts after stomatal opening and modifications of diurnal emission time courses. Because natural conditions always fluctuate, both physiological and physicochemical controls exert a major influence over plant volatile emissions.
                Bookmark

                Author and article information

                Journal
                Acta Physiologiae Plantarum
                Acta Physiol Plant
                Springer Nature
                0137-5881
                1861-1664
                January 2009
                October 2008
                : 31
                : 1
                : 207-218
                Article
                10.1007/s11738-008-0221-z
                c8605fef-5f68-4f99-90f3-aff261ab3552
                © 2009
                History

                Comments

                Comment on this article