15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          3D core–shell nanostructures of few-layer NiFe LDH nanosheets grown on Cu nanowires are fabricated toward highly efficient overall water splitting.

          Abstract

          Developing highly active and low-cost electrocatalysts with superior durability for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is a grand challenge to produce hydrogen by electrolysis of water. Here, we report on a facile and scalable approach to fabricate highly efficient three-dimensional (3D) bulk catalysts of core–shell nanostructures, in which few-layer NiFe layered double hydroxide (LDH) nanosheets are grown on Cu nanowire cores supported on Cu foams, toward overall water splitting. Remarkably, benefiting from the 3D hierarchical nanoarchitecture with large surface areas, fast electron transport, and open-channels for effective gas release, the resulting 3D self-standing catalysts exhibit outstanding OER activity as well as excellent HER performance in an alkaline medium. Using them as bifunctional catalysts for overall water splitting, a current density of 10 mA cm −2 was achieved at a voltage of 1.54 V, and 100 mA cm −2 at 1.69 V with excellent durability, which is much better than the benchmark of IrO 2(+)//Pt(−) electrodes. Our 3D core–shell electrocatalysts significantly advance the research towards large-scale practical water electrolysis.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts.

          Although sunlight-driven water splitting is a promising route to sustainable hydrogen fuel production, widespread implementation is hampered by the expense of the necessary photovoltaic and photoelectrochemical apparatus. Here, we describe a highly efficient and low-cost water-splitting cell combining a state-of-the-art solution-processed perovskite tandem solar cell and a bifunctional Earth-abundant catalyst. The catalyst electrode, a NiFe layered double hydroxide, exhibits high activity toward both the oxygen and hydrogen evolution reactions in alkaline electrolyte. The combination of the two yields a water-splitting photocurrent density of around 10 milliamperes per square centimeter, corresponding to a solar-to-hydrogen efficiency of 12.3%. Currently, the perovskite instability limits the cell lifetime.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

            Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

              Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers.
                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2017
                2017
                : 10
                : 8
                : 1820-1827
                Affiliations
                [1 ]College of Physical Science and Technology
                [2 ]Central China Normal University
                [3 ]Wuhan 430079
                [4 ]China
                [5 ]Department of Physics and TcSUH
                [6 ]University of Houston
                [7 ]Houston
                [8 ]USA
                [9 ]Department of Electrical and Computer Engineering
                Article
                10.1039/C7EE01571B
                c94a3be0-c527-486b-9e37-578f194160fe
                © 2017
                History

                Comments

                Comment on this article