45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          TRPV1 is the founding and best-studied member of the family of temperature-activated transient receptor potential ion channels (thermoTRPs). Voltage, chemicals, and heat amongst other agonists allosterically gate TRPV1. Molecular determinants for TRPV1 activation by capsaicin, allicin, acid, ammonia, and voltage have been identified. However, the structures and mechanisms mediating its pronounced temperature-sensitivity remain unclear. Recent studies of the related channel TRPV3 identified residues within the pore region required for heat activation. Here we use both random and targeted mutagenesis screens of TRPV1 and identify point mutations in the outer pore region that specifically impair temperature-activation. Single channel analysis shows that TRPV1 mutations disrupt heat-sensitivity by ablating long channel openings, that are part of the temperature-gating pathway. We propose that sequential occupancy of short and long open states upon activation provides a mechanism to enhance temperature-sensitivity. Our study suggests that the outer pore plays a general role in heat-sensitivity of thermoTRPs.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Impaired nociception and pain sensation in mice lacking the capsaicin receptor.

          The capsaicin (vanilloid) receptor VR1 is a cation channel expressed by primary sensory neurons of the "pain" pathway. Heterologously expressed VR1 can be activated by vanilloid compounds, protons, or heat (>43 degrees C), but whether this channel contributes to chemical or thermal sensitivity in vivo is not known. Here, we demonstrate that sensory neurons from mice lacking VR1 are severely deficient in their responses to each of these noxious stimuli. VR1-/- mice showed normal responses to noxious mechanical stimuli but exhibited no vanilloid-evoked pain behavior, were impaired in the detection of painful heat, and showed little thermal hypersensitivity in the setting of inflammation. Thus, VR1 is essential for selective modalities of pain sensation and for tissue injury-induced thermal hyperalgesia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A TRP channel that senses cold stimuli and menthol.

            A distinct subset of sensory neurons are thought to directly sense changes in thermal energy through their termini in the skin. Very little is known about the molecules that mediate thermoreception by these neurons. Vanilloid Receptor 1 (VR1), a member of the TRP family of channels, is activated by noxious heat. Here we describe the cloning and characterization of TRPM8, a distant relative of VR1. TRPM8 is specifically expressed in a subset of pain- and temperature-sensing neurons. Cells overexpressing the TRPM8 channel can be activated by cold temperatures and by a cooling agent, menthol. Our identification of a cold-sensing TRP channel in a distinct subpopulation of sensory neurons implicates an expanded role for this family of ion channels in somatic sensory detection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures.

              Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nature neuroscience
                1097-6256
                1546-1726
                30 April 2010
                22 April 2010
                June 2010
                1 December 2010
                : 13
                : 6
                : 708-714
                Affiliations
                [1 ] Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
                [2 ] Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA.
                Author notes
                [3 ] Corresponding author, apatapou@ 123456gnf.org
                [*]

                Present address: Illumina Inc., San Diego, CA 92121, USA.

                Author contributions J.G. designed the study, collected and analyzed data and wrote the manuscript. S.E.K. collected and analyzed data in the primary screen. V.U. prepared the mutant library, collected and analyzed data in the primary screen. B.B. performed molecular modeling. M.P. prepared the mutant library. M.B. developed the screening conditions. A.P. designed the study and edited the manuscript. All authors discussed results and commented on the manuscript.

                Article
                nihpa196780
                10.1038/nn.2552
                2876202
                20414199
                c9b35a78-2291-4cef-9e01-05fd599749d3

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Neurological Disorders and Stroke : NINDS
                Award ID: R01 NS046303-07 ||NS
                Funded by: National Institute of Neurological Disorders and Stroke : NINDS
                Award ID: R01 NS046303-06 ||NS
                Categories
                Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article