6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ultrasound-based triggered drug delivery to tumors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Sonochemistry.

          K Suslick (1990)
          Ultrasound causes high-energy chemistry. It does so through the process of acoustic cavitation: the formation, growth and implosive collapse of bubbles in a liquid. During cavitational collapse, intense heating of the bubbles occurs. These localized hot spots have temperatures of roughly 5000 degrees C, pressures of about 500 atmospheres, and lifetimes of a few microseconds. Shock waves from cavitation in liquid-solid slurries produce high-velocity interparticle collisions, the impact of which is sufficient to melt most metals. Applications to chemical reactions exist in both homogeneous liquids and in liquid-solid systems. Of special synthetic use is the ability of ultrasound to create clean, highly reactive surfaces on metals. Ultrasound has also found important uses for initiation or enhancement of catalytic reactions, in both homogeneous and heterogeneous cases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation.

            The fast development of photoactivation for cancer treatment provides an efficient photo-therapeutic strategy for cancer treatment, but traditional photodynamic or photothermal therapy suffers from the critical issue of low in vivo penetration depth of tissues. As a non-invasive therapeutic modality, sonodynamic therapy (SDT) can break the depth barrier of photoactivation because ultrasound has an intrinsically high tissue-penetration performance. Micro/nanoparticles can efficiently augment the SDT efficiency based on nanobiotechnology. The state-of-art of the representative achievements on micro/nanoparticle-enhanced SDT is summarized, and specific functions of micro/nanoparticles for SDT are discussed, from the different viewpoints of ultrasound medicine, material science and nanobiotechnology. Emphasis is put on the relationship of structure/composition-SDT performance of micro/nanoparticle-based sonosensitizers. Three types of micro/nanoparticle-augmented SDT are discussed, including organic and inorganic sonosensitizers and micro/nanoparticle-based but sonosensitizer-free strategies to enhance the SDT outcome. SDT-based synergistic cancer therapy augmented by micro/nanoparticles and their biosafety are also included. Some urgent critical issues and potential developments of micro/nanoparticle-augmented SDT for efficient cancer treatment are addressed. It is highly expected that micro/nanoparticle-augmented SDT will be quickly developed as a new and efficient therapeutic modality which will find practical applications in cancer treatment. At the same time, fundamental disciplines regarding materials science, chemistry, medicine and nanotechnology will be advanced.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles.

              Local blood-brain barrier (BBB) opening is an advantageous approach for targeted drug delivery to the brain. Recently, it has been shown that focused ultrasound (US) exposures (sonications), when applied in the presence of preformed gas bubbles, caused magnetic-resonance (MR) proven reversible opening of the BBB in targeted locations. The cellular mechanisms of such transient barrier disruption are largely unknown. We investigated US-induced changes in endothelial cell fine morphology that resulted in the BBB opening in rabbits. To obtain evidence for the passage of blood-borne macromolecules through the opened transvascular routes, an immunocytochemical procedure for endogenous immunoglobulinG (IgG) was performed, in addition to the routine electron microscopy. An increased number of vesicles and vacuoles, fenestration and channel formation, as well as opening of some tight junctions, were seen in capillaries after low-power (0.55 W) sonication. Immunosignals presented in some of the vesicles and vacuoles, in the cytoplasmic channels and, so rarely, in intercellular clefts; immunosignals could also be seen in neuropil around the blood vessels. Damage to the cellular ultrastructure was not seen in these areas. However, cell destruction and leakage of IgG through defects of the endothelial lining took place at 3 W sonications. The data reveals that several mechanisms of transcapillary passage are possible after such sonications: 1. transcytosis; 2. endothelial cell cytoplasmic openings--fenestration and channel formation; 3. opening of a part of tight junctions; and 4. free passage through the injured endothelium (with the higher power sonications). These findings could be considered in further development of the strategy for drug delivery to brain parenchyma.
                Bookmark

                Author and article information

                Journal
                Drug Delivery and Translational Research
                Drug Deliv. and Transl. Res.
                Springer Science and Business Media LLC
                2190-393X
                2190-3948
                February 2018
                December 4 2017
                February 2018
                : 8
                : 1
                : 150-164
                Article
                10.1007/s13346-017-0448-6
                29204925
                c9b8675a-5d77-46d3-91cb-d816c5fd94d2
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article