16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mapping of Quantitative Trait Loci Underlying Cold Tolerance in Rice Seedlings via High-Throughput Sequencing of Pooled Extremes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Low temperature is a major limiting factor in rice growth and development. Mapping of quantitative trait loci (QTLs) controlling cold tolerance is important for rice breeding. Recent studies have suggested that bulked segregant analysis (BSA) combined with next-generation sequencing (NGS) can be an efficient and cost-effective way for QTL mapping. In this study, we employed NGS-assisted BSA to map QTLs conferring cold tolerance at the seedling stage in rice. By deep sequencing of a pair of large DNA pools acquired from a very large F 3 population (10,800 individuals), we obtained ∼450,000 single nucleotide polymorphisms (SNPs) after strict screening. We employed two statistical methods for QTL analysis based on these SNPs, which yielded consistent results. Six QTLs were mapped on chromosomes 1, 2, 5, 8 and 10. The three most significant QTLs on chromosomes 1, 2 and 8 were validated by comparison with previous studies. Two QTLs on chromosomes 2 and 5 were also identified previously, but at the booting stage rather than the seedling stage, suggesting that some QTLs may function at different developmental stages, which would be useful for cold tolerance breeding in rice. Compared with previously reported QTL mapping studies for cold tolerance in rice based on the traditional approaches, the results of this study demonstrated the advantages of NGS-assisted BSA in both efficiency and statistical power.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          High-throughput genotyping by whole-genome resequencing.

          The next-generation sequencing technology coupled with the growing number of genome sequences opens the opportunity to redesign genotyping strategies for more effective genetic mapping and genome analysis. We have developed a high-throughput method for genotyping recombinant populations utilizing whole-genome resequencing data generated by the Illumina Genome Analyzer. A sliding window approach is designed to collectively examine genome-wide single nucleotide polymorphisms for genotype calling and recombination breakpoint determination. Using this method, we constructed a genetic map for 150 rice recombinant inbred lines with an expected genotype calling accuracy of 99.94% and a resolution of recombination breakpoints within an average of 40 kb. In comparison to the genetic map constructed with 287 PCR-based markers for the rice population, the sequencing-based method was approximately 20x faster in data collection and 35x more precise in recombination breakpoint determination. Using the sequencing-based genetic map, we located a quantitative trait locus of large effect on plant height in a 100-kb region containing the rice "green revolution" gene. Through computer simulation, we demonstrate that the method is robust for different types of mapping populations derived from organisms with variable quality of genome sequences and is feasible for organisms with large genome sizes and low polymorphisms. With continuous advances in sequencing technologies, this genome-based method may replace the conventional marker-based genotyping approach to provide a powerful tool for large-scale gene discovery and for addressing a wide range of biological questions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            SHOREmap: simultaneous mapping and mutation identification by deep sequencing.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissection of genetically complex traits with extremely large pools of yeast segregants

              Most heritable traits, including many human diseases 1, are caused by multiple loci. Studies in both humans and model organisms, such as yeast, have failed to detect a large fraction of the loci that underlie such complex traits 2,3. A lack of statistical power to identify multiple loci with small effects is undoubtedly one of the primary reasons for this problem. We have developed a method in yeast that allows the use of dramatically larger sample sizes than previously possible and hence permits the detection of multiple loci with small effects. The method involves generating very large numbers of progeny from a cross between two strains and then phenotyping and genotyping pools of these offspring. We applied the method to 17 chemical resistance traits and mitochondrial function, and identified loci for each of these phenotypes. We show that the range of genetic complexity underlying these quantitative traits is highly variable, with some traits influenced by one major locus and others due to at least 20 loci. Our results provide an empirical demonstration of the genetic complexity of many traits and show that it is possible to identify many of the underlying factors using straightforward techniques. Our method should have broad applications in yeast and can be extended to other organisms.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                30 July 2013
                : 8
                : 7
                : e68433
                Affiliations
                [1 ]Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
                [2 ]National Research Council of Canada, Saskatoon, Saskatchewan, Canada
                [3 ]Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
                Pennsylvania State University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: WW AJC. Performed the experiments: ZY DH. Analyzed the data: WT DH ZY. Contributed reagents/materials/analysis tools: YZ KL. Wrote the paper: ZY DH WT WW AJC.

                Article
                PONE-D-13-09802
                10.1371/journal.pone.0068433
                3728330
                23935868
                c9c0c665-6d34-48ae-aa5b-67889d0e73cd
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 March 2013
                : 29 May 2013
                Page count
                Pages: 7
                Funding
                These authors have no support or funding to report.
                Categories
                Research Article
                Agriculture
                Crops
                Cereals
                Rice
                Biology
                Genetics
                Heredity
                Complex Traits
                Linkage (Genetics)
                Quantitative Traits
                Trait Locus
                Plant Genetics
                Crop Genetics
                Plant Science
                Plant Genetics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article