93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A universal barcode system for land plants would be a valuable resource, with potential utility in fields as diverse as ecology, floristics, law enforcement and industry. However, the application of plant barcoding has been constrained by a lack of consensus regarding the most variable and technically practical DNA region(s). We compared eight candidate plant barcoding regions from the plastome and one from the mitochondrial genome for how well they discriminated the monophyly of 92 species in 32 diverse genera of land plants ( N = 251 samples). The plastid markers comprise portions of five coding ( rpoB, rpoC1, rbcL, matK and 23S rDNA) and three non-coding ( trnH-psbA, atpF–atpH, and psbK–psbI) loci. Our survey included several taxonomically complex groups, and in all cases we examined multiple populations and species. The regions differed in their ability to discriminate species, and in ease of retrieval, in terms of amplification and sequencing success. Single locus resolution ranged from 7% (23S rDNA) to 59% ( trnH-psbA) of species with well-supported monophyly. Sequence recovery rates were related primarily to amplification success (85–100% for plastid loci), with matK requiring the greatest effort to achieve reasonable recovery (88% using 10 primer pairs). Several loci ( matK, psbK–psbI, trnH-psbA) were problematic for generating fully bidirectional sequences. Setting aside technical issues related to amplification and sequencing, combining the more variable plastid markers provided clear benefits for resolving species, although with diminishing returns, as all combinations assessed using four to seven regions had only marginally different success rates (69–71%; values that were approached by several two- and three-region combinations). This performance plateau may indicate fundamental upper limits on the precision of species discrimination that is possible with DNA barcoding systems that include moderate numbers of plastid markers. Resolution to the contentious debate on plant barcoding should therefore involve increased attention to practical issues related to the ease of sequence recovery, global alignability, and marker redundancy in multilocus plant DNA barcoding systems.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Use of DNA barcodes to identify flowering plants.

          Methods for identifying species by using short orthologous DNA sequences, known as "DNA barcodes," have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short ( approximately 450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region

            Background A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Methodology/Principal Findings Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. Conclusions/Significance A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Gene Trees in Species Trees

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                30 July 2008
                : 3
                : 7
                : e2802
                Affiliations
                [1 ]Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
                [2 ]Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
                [3 ]UBC Botanical Garden amd Centre for Plant Research, and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
                [4 ]Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
                American Museum of Natural History, United States of America
                Author notes

                Conceived and designed the experiments: AF KSB PRK SG SGN BH DMP MH SCHB. Performed the experiments: AF KSB PRK. Analyzed the data: AF KSB PRK SG SGN BH. Contributed reagents/materials/analysis tools: SG SGN BH. Wrote the paper: AF KSB PRK SG SGN BH SCHB. Co-led the analysis and writing: SG.

                Article
                08-PONE-RA-03916R1
                10.1371/journal.pone.0002802
                2475660
                18665273
                ca9cf0a9-1816-4d37-92fa-39db60b4ada0
                Fazekas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 March 2008
                : 23 June 2008
                Page count
                Pages: 12
                Categories
                Research Article
                Ecology
                Evolutionary Biology
                Genetics and Genomics
                Plant Biology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article