13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR(+) T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19(+) leukemia. Long-lived T cells were CD45RO(neg)CCR7(+)CD95(+), phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR(+) T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer.

          Interleukin-15 (IL-15) has significant potential in cancer immunotherapy as an activator of antitumor CD8 T and natural killer (NK) cells. The primary objectives of this trial were to determine safety, adverse event profile, dose-limiting toxicity, and maximum-tolerated dose of recombinant human IL-15 (rhIL-15) administered as a daily intravenous bolus infusion for 12 consecutive days in patients with metastatic malignancy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors.

            Long-living memory stem T cells (T(SCM)) with the ability to self-renew and the plasticity to differentiate into potent effectors could be valuable weapons in adoptive T-cell therapy against cancer. Nonetheless, procedures to specifically target this T-cell population remain elusive. Here, we show that it is possible to differentiate in vitro, expand, and gene modify in clinically compliant conditions CD8(+) T(SCM) lymphocytes starting from naive precursors. Requirements for the generation of this T-cell subset, described as CD62L(+)CCR7(+)CD45RA(+)CD45R0(+)IL-7Rα(+)CD95(+), are CD3/CD28 engagement and culture with IL-7 and IL-15. Accordingly, T(SCM) accumulates early after hematopoietic stem cell transplantation. The gene expression signature and functional phenotype define this population as a distinct memory T-lymphocyte subset, intermediate between naive and central memory cells. When transplanted in immunodeficient mice, gene-modified naive-derived T(SCM) prove superior to other memory lymphocytes for the ability to expand and differentiate into effectors able to mediate a potent xenogeneic GVHD. Furthermore, gene-modified T(SCM) are the only T-cell subset able to expand and mediate GVHD on serial transplantation, suggesting self-renewal capacity in a clinically relevant setting. These findings provide novel insights into the origin and requirements for T(SCM) generation and pave the way for their clinical rapid exploitation in adoptive cell therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15.

              Proliferation of memory-phenotype (CD44hi) CD8+ cells induced by infectious agents can be mimicked by injection of type I interferon (IFN I) and by IFN I-inducing agents such as lipopolysaccharide and Poly I:C; such proliferation does not affect naive T cells and appears to be TCR independent. Since IFN I inhibits proliferation in vitro, IFN I-induced proliferation of CD8+ cells in vivo presumably occurs indirectly through production of secondary cytokines, e.g., interleukin-2 (IL-2) or IL-15. We show here that, unlike IL-2, IL-15 closely mimics the effects of IFN I in causing strong and selective stimulation of memory-phenotype CD44hi CD8+ (but not CD4+) cells in vivo; similar specificity applies to purified T cells in vitro and correlates with much higher expression of IL-2Rbeta on CD8+ cells than on CD4+ cells.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                November 29 2016
                November 29 2016
                November 29 2016
                November 14 2016
                : 113
                : 48
                : E7788-E7797
                Article
                10.1073/pnas.1610544113
                5137758
                27849617
                ca9ea218-b681-47f1-aa1f-ff7e2888844a
                © 2016

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article