20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Kβ Mainline X-ray Emission Spectroscopy as an Experimental Probe of Metal–Ligand Covalency

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mainline feature in metal Kβ X-ray emission spectroscopy (XES) has long been recognized as an experimental marker for the spin state of the metal center. However, even within a series of metal compounds with the same nominal oxidation and spin state, significant changes are observed that cannot be explained on the basis of overall spin. In this work, the origin of these effects is explored, both experimentally and theoretically, in order to develop the chemical information content of Kβ mainline XES. Ligand field expressions are derived that describe the behavior of Kβ mainlines for first row transition metals with any d n count, allowing for a detailed analysis of the factors governing mainline shape. Further, due to limitations associated with existing computational approaches, we have developed a new methodology for calculating Kβ mainlines using restricted active space configuration interaction (RAS–CI) calculations. This approach eliminates the need for empirical parameters and provides a powerful tool for investigating the effects that chemical environment exerts on the mainline spectra. On the basis of a detailed analysis of the intermediate and final states involved in these transitions, we confirm the known sensitivity of Kβ mainlines to metal spin state via the 3p–3d exchange coupling. Further, a quantitative relationship between the splitting of the Kβ mainline features and the metal–ligand covalency is established. Thus, this study furthers the quantitative electronic structural information that can be extracted from Kβ mainline spectroscopy.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          UCSF Chimera--a visualization system for exploratory research and analysis.

          The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/. Copyright 2004 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor.

            Nitrogenase is a complex enzyme that catalyzes the reduction of dinitrogen to ammonia. Despite insight from structural and biochemical studies, its structure and mechanism await full characterization. An iron-molybdenum cofactor (FeMoco) is thought to be the site of dinitrogen reduction, but the identity of a central atom in this cofactor remains unknown. Fe Kβ x-ray emission spectroscopy (XES) of intact nitrogenase MoFe protein, isolated FeMoco, and the FeMoco-deficient nifB protein indicates that among the candidate atoms oxygen, nitrogen, and carbon, it is carbon that best fits the XES data. The experimental XES is supported by computational efforts, which show that oxidation and spin states do not affect the assignment of the central atom to C(4-). Identification of the central atom will drive further studies on its role in catalysis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              High-resolution X-ray emission and X-ray absorption spectroscopy.

                Bookmark

                Author and article information

                Journal
                J Am Chem Soc
                J. Am. Chem. Soc
                ja
                jacsat
                Journal of the American Chemical Society
                American Chemical Society
                0002-7863
                1520-5126
                10 June 2015
                10 June 2014
                02 July 2014
                : 136
                : 26
                : 9453-9463
                Affiliations
                []Max-Planck-Institut für Chemische Energiekonversion, D-45470 Mülheim an der Ruhr, Germany
                []Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
                [§ ]Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences , 1113 Sofia, Bulgaria
                Author notes
                Article
                10.1021/ja504182n
                4091279
                24914450
                cbc64cfa-c231-4369-8d49-d0ed26e49440
                Copyright © 2014 American Chemical Society

                Terms of Use

                History
                : 27 April 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                ja504182n
                ja-2014-04182n

                Chemistry
                Chemistry

                Comments

                Comment on this article