18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calibration adjustments to address bias in mortality analyses due to informative sampling—a census-linked survey analysis in Switzerland

      research-article
      1 , 2 , , 3 , 2 , Swiss National Cohort study group
      PeerJ
      PeerJ Inc.
      Calibration weights, Census, Informative sampling, Micro census, Mortality analysis, Survey

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sampling bias, like survey participants’ nonresponse, needs to be adequately addressed in the analysis of sampling designs. Often survey weights will be calibrated on specific covariates related to the probability of selection and nonresponse to get representative population estimates. However, such calibrated survey (CS) weights are usually constructed for cross-sectional results, but not for longitudinal analyses. For example, when the outcome of interest is time to death, and sampling selection is related to time to death and censoring, sampling is informative. Then, unweighted or CS weighted inferential statistical analyses may be biased. In 2010, Switzerland changed from a decennial full enumeration census to a yearly registry-based (i.e., data from harmonised community registries) and a survey-based census system. In the present study, we investigated the potential bias due to informative sampling when time to death is the outcome of interest, using data from the new Swiss census system.

          Methods

          We analysed more than 6.5 million individuals aged 15 years or older from registry-based census data from years 2010 to 2013, linked with mortality records up to end of 2014. Out of this population, a target sample of 3.5% was sampled from the Swiss Federal Statistical Office (SFSO) in a stratified yearly micro census. The SFSO calculated CS weights to enable representative population estimates from the micro census. We additionally constructed inverse probability (IP) weights, where we used survival information in addition to known sampling covariates. We compared CS and IP weighted mortality rates (MR) and life expectancy (LE) with estimates from the underlying population. Additionally, we performed a simulation study under different sampling and nonresponse scenarios.

          Results

          We found that individuals who died in 2011, had a 0.67 (95% CI [0.64–0.70]) times lower odds of participating in the 2010 micro census, using a multivariable logistic regression model with covariates age, gender, nationality, civil status, region and survival information. IP weighted MR were comparable to estimates from the total population, whereas CS weighted MR underestimated the population MR in general. The IP weighted LE estimates at age 30 years for men were 50.9 years (95% CI [50.2–51.6] years), whereas the CS weighted overestimated LE by 2.5 years. Our results from the simulation study confirmed that IP weighted models are comparable to population estimates.

          Conclusion

          Mortality analyses based on the new Swiss survey-based census system may be biased, because of informative sampling. We conclude that mortality analyses based on census-linked survey data have to be carefully conducted, and if possible, validated by registry information to allow for unbiased interpretation and generalisation.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

          Summary Background Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. Methods We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15–60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. Findings Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5–24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates—a measure of relative inequality—increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7–87·2), and for men in Singapore, at 81·3 years (78·8–83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, and the gap between male and female life expectancy increased with progression to higher levels of SDI. Some countries with exceptional health performance in 1990 in terms of the difference in observed to expected life expectancy at birth had slower progress on the same measure in 2016. Interpretation Globally, mortality rates have decreased across all age groups over the past five decades, with the largest improvements occurring among children younger than 5 years. However, at the national level, considerable heterogeneity remains in terms of both level and rate of changes in age-specific mortality; increases in mortality for certain age groups occurred in some locations. We found evidence that the absolute gap between countries in age-specific death rates has declined, although the relative gap for some age-sex groups increased. Countries that now lead in terms of having higher observed life expectancy than that expected on the basis of development alone, or locations that have either increased this advantage or rapidly decreased the deficit from expected levels, could provide insight into the means to accelerate progress in nations where progress has stalled. Funding Bill & Melinda Gates Foundation, and the National Institute on Aging and the National Institute of Mental Health of the National Institutes of Health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The German National Cohort: aims, study design and organization

            (2014)
            The German National Cohort (GNC) is a joint interdisciplinary endeavour of scientists from the Helmholtz and the Leibniz Association, universities, and other research institutes. Its aim is to investigate the causes for the development of major chronic diseases, i.e. cardiovascular diseases, cancer, diabetes, neurodegenerative/-psychiatric diseases, musculoskeletal diseases, respiratory and infectious diseases, and their pre-clinical stages or functional health impairments. Across Germany, a random sample of the general population will be drawn by 18 regional study centres, including a total of 100,000 women and 100,000 men aged 20–69 years. The baseline assessments include an extensive interview and self-completion questionnaires, a wide range of medical examinations and the collection of various biomaterials. In a random subgroup of 20 % of the participants (n = 40,000) an intensified examination (“Level 2”) programme will be performed. In addition, in five of the 18 study centres a total of 30,000 study participants will take part in a magnetic resonance imaging examination programme, and all of these participants will also be offered the intensified Level 2 examinations. After 4–5 years, all participants will be invited for a re-assessment. Information about chronic disease endpoints will be collected through a combination of active follow-up (including questionnaires every 2–3 years) and record linkages. The GNC is planned for an overall duration of 25–30 years. It will provide a major, central resource for population-based epidemiology in Germany, and will help to identify new and tailored strategies for early detection, prediction, and primary prevention of major diseases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Danish National Birth Cohort - its background, structure and aim

                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                13 February 2018
                2018
                : 6
                : e4376
                Affiliations
                [1 ]Department of Geriatrics, Inselspital, University Hospital, and University of Bern , Bern, Switzerland
                [2 ]Institute of Social and Preventive Medicine, University of Bern , Bern, Switzerland
                [3 ]Epidemiology, Biostatistics and Prevention Institute, University of Zürich , Zürich, Switzerland
                Article
                4376
                10.7717/peerj.4376
                5815334
                29456895
                cc4c58c8-81fd-48f7-91bf-bf3bad0fec78
                ©2018 Moser et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 6 November 2017
                : 26 January 2018
                Funding
                Funded by: Swiss National Science Foundation
                Award ID: 3347CO-108806
                Award ID: 33CS30_134273
                Award ID: 33CS30_148415
                The Swiss National Cohort was supported by the Swiss National Science Foundation (grant nos. 3347CO-108806, 33CS30_134273 and 33CS30_148415). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Epidemiology
                Statistics

                calibration weights,census,informative sampling,micro census,mortality analysis,survey

                Comments

                Comment on this article