2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antimicrobial lead compounds from marine plants

      chapter-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Marine environment is a home to a very wide diversity of flora and fauna, which includes an array of genetically diverse coastline and under seawater plant species, animal species, microbial species, their habitats, ecosystems, and supporting ecological processes. The Earth is home to an estimated 10 million species, of which a large chunk belongs to marine environment. Marine plants are a store house of a variety of antimicrobial compounds like classes of marine flavonoids—flavones and flavonols, terpenoids, alkaloids, peptides, carbohydrates, fatty acids, polyketides, polysaccharides, phenolic compounds, and steroids. Lot of research today is directed toward marine species, which have proved to be a potent source of structurally widely diverse and yet highly bioactive secondary metabolites. Varied species of phylum Porifera, algae including diatoms, Chlorophyta, Euglenophyta, Dinoflagellata, Chrysophyta, cyanobacteria, Rhodophyta, and Phaeophyta, bacteria, fungi, and weeds have been exploited by mankind for their inherent indigenous biological antimicrobial compounds, produced under the extreme stressful underwater conditions of temperature, atmospheric pressure, light, and nutrition. The present study aims at presenting a brief review of bioactive marine compounds possessing antimicrobial potency.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances in understanding the antibacterial properties of flavonoids.

          Antibiotic resistance is a major global problem and there is a pressing need to develop new therapeutic agents. Flavonoids are a family of plant-derived compounds with potentially exploitable activities, including direct antibacterial activity, synergism with antibiotics, and suppression of bacterial virulence. In this review, recent advances towards understanding these properties are described. Information is presented on the ten most potently antibacterial flavonoids as well as the five most synergistic flavonoid-antibiotic combinations tested in the last 6 years (identified from PubMed and ScienceDirect). Top of these respective lists are panduratin A, with minimum inhibitory concentrations (MICs) of 0.06-2.0 μg/mL against Staphylococcus aureus, and epicatechin gallate, which reduces oxacillin MICs as much as 512-fold. Research seeking to improve such activity and understand structure-activity relationships is discussed. Proposed mechanisms of action are also discussed. In addition to direct and synergistic activities, flavonoids inhibit a number of bacterial virulence factors, including quorum-sensing signal receptors, enzymes and toxins. Evidence of these molecular effects at the cellular level include in vitro inhibition of biofilm formation, inhibition of bacterial attachment to host ligands, and neutralisation of toxicity towards cultured human cells. In vivo evidence of disruption of bacterial pathogenesis includes demonstrated efficacy against Helicobacter pylori infection and S. aureus α-toxin intoxication. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Carrageenans: Biological properties, chemical modifications and structural analysis – A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities.

              With reports of pandrug-resistant bacteria causing untreatable infections, the need for new antibacterial therapies is more pressing than ever. Alkaloids are a large and structurally diverse group of compounds that have served as scaffolds for important antibacterial drugs such as metronidazole and the quinolones. In this review, we highlight other alkaloids with development potential. Natural, semisynthetic and synthetic alkaloids of all classes are considered, looking first at those with direct antibacterial activity and those with antibiotic-enhancing activity. Potent examples include CJ-13,136, a novel actinomycete-derived quinolone alkaloid with a minimum inhibitory concentration of 0.1 ng/mL against Helicobacter pylori, and squalamine, a polyamine alkaloid from the dogfish shark that renders Gram-negative pathogens 16- to >32-fold more susceptible to ciprofloxacin. Where available, information on toxicity, structure-activity relationships, mechanisms of action and in vivo activity is presented. The effects of alkaloids on virulence gene regulatory systems such as quorum sensing and virulence factors such as sortases, adhesins and secretion systems are also described. The synthetic isoquinoline alkaloid virstatin, for example, inhibits the transcriptional regulator ToxT in Vibrio cholerae, preventing expression of cholera toxin and fimbriae and conferring in vivo protection against intestinal colonisation. The review concludes with implications and limitations of the described research and directions for future research.
                Bookmark

                Author and article information

                Journal
                Phytochemicals as Lead Compounds for New Drug Discovery
                Phytochemicals as Lead Compounds for New Drug Discovery
                24 January 2020
                2020
                24 January 2020
                : 257-274
                Affiliations
                [1]Department of Microbiology, Sangli, Maharashtra, India
                Article
                B978-0-12-817890-4.00017-2
                10.1016/B978-0-12-817890-4.00017-2
                7153345
                cc71caa7-8916-4a11-bd04-8e789fa2c735
                Copyright © 2020 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                bioactive secondary metabolites,genetically diverse,marine environment

                Comments

                Comment on this article