18
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      A Zebrafish Model for Uremic Toxicity: Role of the Complement Pathway

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many organic solutes accumulate in end-stage renal disease (ESRD) and some are poorly removed with urea-based prescriptions for hemodialysis. However, their toxicities have been difficult to assess. We have employed an animal model, the zebrafish embryo, to test the toxicity of uremic serum compared to control. Serum was obtained from stable ESRD patients predialysis or from normal subjects. Zebrafish embryos 24 h postfertilization were exposed to experimental media at a water:human serum ratio of 3:1. Those exposed to serum from uremic subjects had significantly reduced survival at 8 h (19 ± 18 vs. 94 ± 6%, p < 0.05, uremic serum vs. control, respectively). Embryos exposed to serum from ESRD subjects fractionated at 50 kDa showed significantly greater toxicity with the larger molecular weight fraction (83 ± 11 vs. 7 ± 17% survival, p < 0.05, <50 vs. >50 kDa, respectively). Heating serum abrogated its toxicity. EDTA, a potent inhibitor of complement by virtue of calcium chelation, reduced the toxicity of uremic serum compared to untreated uremic serum (96 ± 5 vs. 28 ± 20% survival, p < 0.016, chelated vs. nonchelated serum, respectively). Anti-factor B, a specific inhibitor of the alternative complement pathway, reduced the toxicity of uremic serum, compared to untreated uremic serum (98 ± 6 vs. 3 ± 9% survival, p < 0.016, anti-factor B treated vs. nontreated, respectively). Uremic serum is thus more toxic to zebrafish embryos than normal serum. Furthermore, this toxicity is associated with a fraction of large size, is inactivated by heat, and is reduced by both specific and nonspecific inhibitors of complement activation. Together these data lend support to the hypothesis that at least some uremic toxicities may be mediated by complement.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients.

          As a major component of uremic syndrome, cardiovascular disease is largely responsible for the high mortality observed in chronic kidney disease (CKD). Preclinical studies have evidenced an association between serum levels of indoxyl sulfate (IS, a protein-bound uremic toxin) and vascular alterations. The aim of this study is to investigate the association between serum IS, vascular calcification, vascular stiffness, and mortality in a cohort of CKD patients. One-hundred and thirty-nine patients (mean +/- SD age: 67 +/- 12; 60% male) at different stages of CKD (8% at stage 2, 26.5% at stage 3, 26.5% at stage 4, 7% at stage 5, and 32% at stage 5D) were enrolled. Baseline IS levels presented an inverse relationship with renal function and a direct relationship with aortic calcification and pulse wave velocity. During the follow-up period (605 +/- 217 d), 25 patients died, mostly because of cardiovascular events (n = 18). In crude survival analyses, the highest IS tertile was a powerful predictor of overall and cardiovascular mortality (P = 0.001 and 0.012, respectively). The predictive power of IS for death was maintained after adjustment for age, gender, diabetes, albumin, hemoglobin, phosphate, and aortic calcification. The study presented here indicates that IS may have a significant role in the vascular disease and higher mortality observed in CKD patients.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Uremia.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              p-Cresol and cardiovascular risk in mild-to-moderate kidney disease.

              Cardiovascular disease is highly prevalent in chronic kidney disease. Traditional risk factors are insufficient to explain the high cardiovascular disease prevalence. Free p-cresol serum concentrations, mainly circulating as its derivative p-cresyl sulfate, are associated with cardiovascular disease in hemodialysis patients. It is not known if p-cresol is associated with cardiovascular disease in patients with chronic kidney disease not yet on dialysis. In a prospective observational study in 499 patients with mild-to-moderate kidney disease, we examined the multivariate association between p-cresol free serum concentrations and cardiovascular events. After a mean follow-up of 33 mo, 62 patients reached the primary end point of fatal or nonfatal cardiovascular events. Higher baseline concentrations of free p-cresol were directly associated with cardiovascular events (univariate hazard ratio [HR] 1.79, P<0.0001). In multivariate analysis, p-cresol remained a predictor of cardiovascular events, independent of GFR and independent of Framingham risk factors (full model, HR 1.39, P=0.04). These findings suggest that p-cresol measurements may help to predict cardiovascular disease risk in renal patients over a wide range of residual renal function, beyond traditional markers of glomerular filtration. Whether p-cresol is a modifiable cardiovascular risk factor in CKD patients remains to be proven.
                Bookmark

                Author and article information

                Journal
                BPU
                Blood Purif
                10.1159/issn.0253-5068
                Blood Purification
                S. Karger AG
                0253-5068
                1421-9735
                2013
                August 2013
                08 May 2013
                : 35
                : 4
                : 265-269
                Affiliations
                aWeill Cornell Medical College, New York, N.Y., bAlbert Einstein College of Medicine, Bronx, N.Y., cUniversity of Colorado School of Medicine, Aurora, Colo., dUniversity of Nebraska Medical Center, Omaha, Nebr., eStanford University School of Medicine and VA Medical Center, Palo Alto, Calif., and fCase Western Reserve University School of Medicine, Cleveland, Ohio, USA
                Author notes
                *T.H. Hostetter, University Hospitals Case Medical Center, Department of Medicine, Division of Nephrology and Hypertension, Room 8124 Lakeside Building, 11100 Euclid Ave, Cleveland, OH 44106 (USA), E-Mail thomas.hostetter@uhhospitals.org
                Article
                348456 PMC5034729 Blood Purif 2013;35:265-269
                10.1159/000348456
                PMC5034729
                23689420
                cc778972-213d-44d2-a44c-925bff6ecffa
                © 2013 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 19 July 2012
                : 29 January 2013
                Page count
                Figures: 1, Tables: 4, Pages: 5
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                End-stage renal disease,Zebrafish model,Uremic toxicity
                Cardiovascular Medicine, Nephrology
                End-stage renal disease, Zebrafish model, Uremic toxicity

                Comments

                Comment on this article