0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A subject-specific musculoskeletal model to predict the tibiofemoral contact forces during daily living activities

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          OpenSim: open-source software to create and analyze dynamic simulations of movement.

          Dynamic simulations of movement allow one to study neuromuscular coordination, analyze athletic performance, and estimate internal loading of the musculoskeletal system. Simulations can also be used to identify the sources of pathological movement and establish a scientific basis for treatment planning. We have developed a freely available, open-source software system (OpenSim) that lets users develop models of musculoskeletal structures and create dynamic simulations of a wide variety of movements. We are using this system to simulate the dynamics of individuals with pathological gait and to explore the biomechanical effects of treatments. OpenSim provides a platform on which the biomechanics community can build a library of simulations that can be exchanged, tested, analyzed, and improved through a multi-institutional collaboration. Developing software that enables a concerted effort from many investigators poses technical and sociological challenges. Meeting those challenges will accelerate the discovery of principles that govern movement control and improve treatments for individuals with movement pathologies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement

            Movement is fundamental to human and animal life, emerging through interaction of complex neural, muscular, and skeletal systems. Study of movement draws from and contributes to diverse fields, including biology, neuroscience, mechanics, and robotics. OpenSim unites methods from these fields to create fast and accurate simulations of movement, enabling two fundamental tasks. First, the software can calculate variables that are difficult to measure experimentally, such as the forces generated by muscles and the stretch and recoil of tendons during movement. Second, OpenSim can predict novel movements from models of motor control, such as kinematic adaptations of human gait during loaded or inclined walking. Changes in musculoskeletal dynamics following surgery or due to human–device interaction can also be simulated; these simulations have played a vital role in several applications, including the design of implantable mechanical devices to improve human grasping in individuals with paralysis. OpenSim is an extensible and user-friendly software package built on decades of knowledge about computational modeling and simulation of biomechanical systems. OpenSim’s design enables computational scientists to create new state-of-the-art software tools and empowers others to use these tools in research and clinical applications. OpenSim supports a large and growing community of biomechanics and rehabilitation researchers, facilitating exchange of models and simulations for reproducing and extending discoveries. Examples, tutorials, documentation, and an active user forum support this community. The OpenSim software is covered by the Apache License 2.0, which permits its use for any purpose including both nonprofit and commercial applications. The source code is freely and anonymously accessible on GitHub, where the community is welcomed to make contributions. Platform-specific installers of OpenSim include a GUI and are available on simtk.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Loading of the knee joint during activities of daily living measured in vivo in five subjects.

              Detailed knowledge about loading of the knee joint is essential for preclinical testing of implants, validation of musculoskeletal models and biomechanical understanding of the knee joint. The contact forces and moments acting on the tibial component were therefore measured in 5 subjects in vivo by an instrumented knee implant during various activities of daily living. Average peak resultant forces, in percent of body weight, were highest during stair descending (346% BW), followed by stair ascending (316% BW), level walking (261% BW), one legged stance (259% BW), knee bending (253% BW), standing up (246% BW), sitting down (225% BW) and two legged stance (107% BW). Peak shear forces were about 10-20 times smaller than the axial force. Resultant forces acted almost vertically on the tibial plateau even during high flexion. Highest moments acted in the frontal plane with a typical peak to peak range -2.91% BWm (adduction moment) to 1.61% BWm (abduction moment) throughout all activities. Peak flexion/extension moments ranged between -0.44% BWm (extension moment) and 3.16% BWm (flexion moment). Peak external/internal torques lay between -1.1% BWm (internal torque) and 0.53% BWm (external torque). The knee joint is highly loaded during daily life. In general, resultant contact forces during dynamic activities were lower than the ones predicted by many mathematical models, but lay in a similar range as measured in vivo by others. Some of the observed load components were much higher than those currently applied when testing knee implants. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Computer Methods in Biomechanics and Biomedical Engineering
                Computer Methods in Biomechanics and Biomedical Engineering
                Informa UK Limited
                1025-5842
                1476-8259
                June 11 2023
                July 19 2022
                June 11 2023
                : 26
                : 8
                : 972-985
                Affiliations
                [1 ]Innovation Center of Bioengineering, Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi'an, P.R. China
                [2 ]Joint Surgery Department, Xi’an Hong-hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, P.R. China
                [3 ]Department of Industrial Design, School of Art and Design, Xi’an University of Technology, Xi’an, P.R. China
                Article
                10.1080/10255842.2022.2101889
                ccb6cb00-9dff-43c4-8296-d38c0b6088f2
                © 2023
                History

                Comments

                Comment on this article