9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroCT analysis of vascular morphometry: a comparison of right lung lobes in the SUGEN/hypoxic rat model of pulmonary arterial hypertension

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pulmonary arterial hypertension (PAH) is a rare disease characterized by significant vascular remodeling within the lung. Clinical computed tomography (CT) scans are routinely used to aid in PAH diagnosis. Animal models, including the Sugen-hypoxic rat model (SU/hyp), of PAH closely mimic human PAH development. We have previously used micro-computed tomography (microCT) to find extensive right lung vascular remodeling in the SU/hyp. We hypothesized that the individual right lung lobes may not contribute equally to overall lung vascular remodeling. Sprague-Dawley rats were subjected to a subcutaneous injection of vascular endothelial growth factor receptor blocker (Sugen 5416) and subsequently exposed to chronic hypoxic conditions (10% O 2) for three weeks. Following perfusion of the lung vasculature with an opaque resin (Microfil), the right lung lobes were microCT-imaged with a 10-µm voxel resolution and 3D morphometry analysis was performed separately on each lobe. As expected, we found a significantly lower ratio of vascular volume to total lobe volume in the SU/hyp compared with the control, but only in the distal lobes (inferior: 0.23 [0.21–0.30] versus 0.35 [0.27–0.43], P = 0.02; accessory: 0.27 [0.25–0.33] versus 0.37 [0.29–0.43], P = 0.06). Overall, we observed significantly fewer continuous blood vessels and reduced vascular density while having greater vascular lumen diameters in the distal lobes of both groups ( P < 0.05). In addition, the vascular separation within the SU/hyp lobes and the vascular surface area to volume ratio were significantly greater in the SU/hyp lobes compared with controls ( P < 0.03). Results for the examined parameters support the overall extensive vascular remodeling in the SU/hyp model and suggest this may be lobe-dependent.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor

          SUMMARY Co-development of the cardiovascular and pulmonary systems is a recent evolutionary adaption to terrestrial life that couples cardiac output with the gas exchange function of the lung 1 . In this report, we show that the pulmonary vasculature develops even in the absence of lung development. We have identified a population of multi-potent cardiopulmonary mesoderm progenitors (CPPs) within the posterior pole of the heart that are marked by the expression of Wnt2/Gli1/Isl1. We show that CPPs arise from cardiac progenitors prior to lung development. Lineage tracing and clonal analysis demonstrates that CPPs generate the mesoderm lineages within the cardiac inflow tract and lung including cardiomyocytes, pulmonary vascular and airway smooth muscle, proximal vascular endothelium, and pericyte-like cells. CPPs are regulated by hedgehog expression from the foregut endoderm, which is required for connection of the pulmonary vasculature to the heart. Together, these studies identify a novel population of multipotent cardiopulmonary progenitors that coordinates heart and lung co-development that is required for adaptation to terrestrial existence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Computed tomographic measures of pulmonary vascular morphology in smokers and their clinical implications.

            Angiographic investigation suggests that pulmonary vascular remodeling in smokers is characterized by distal pruning of the blood vessels. Using volumetric computed tomography scans of the chest we sought to quantitatively evaluate this process and assess its clinical associations. Pulmonary vessels were automatically identified, segmented, and measured. Total blood vessel volume (TBV) and the aggregate vessel volume for vessels less than 5 mm(2) (BV5) were calculated for all lobes. The lobe-specific BV5 measures were normalized to the TBV of that lobe and the nonvascular tissue volume (BV5/T(issue)V) to calculate lobe-specific BV5/TBV and BV5/T(issue)V ratios. Densitometric measures of emphysema were obtained using a Hounsfield unit threshold of -950 (%LAA-950). Measures of chronic obstructive pulmonary disease severity included single breath measures of diffusing capacity of carbon monoxide, oxygen saturation, the 6-minute-walk distance, St George's Respiratory Questionnaire total score (SGRQ), and the body mass index, airflow obstruction, dyspnea, and exercise capacity (BODE) index. The %LAA-950 was inversely related to all calculated vascular ratios. In multivariate models including age, sex, and %LAA-950, lobe-specific measurements of BV5/TBV were directly related to resting oxygen saturation and inversely associated with both the SGRQ and BODE scores. In similar multivariate adjustment lobe-specific BV5/T(issue)V ratios were inversely related to resting oxygen saturation, diffusing capacity of carbon monoxide, 6-minute-walk distance, and directly related to the SGRQ and BODE. Smoking-related chronic obstructive pulmonary disease is characterized by distal pruning of the small blood vessels (<5 mm(2)) and loss of tissue in excess of the vasculature. The magnitude of these changes predicts the clinical severity of disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes.

              Lung macro- and microvascular endothelial cells exhibit unique functional attributes, including signal transduction and barrier properties. We therefore sought to identify structural and functional features of endothelial cells that discriminate their phenotypes in the fully differentiated lung. Rat lung macro- (PAEC) and microvascular (PMVEC) endothelial cells each exhibited expression of typical markers. Screening for reactivity with nine different lectins revealed that Glycine max and Griffonia (Bandeiraea) simplicifolia preferentially bound microvascular endothelia whereas Helix pomatia preferentially bound macrovascular endothelia. Apposition between the apical plasmalemma and endoplasmic reticulum was closer in PAECs (8 nm) than in PMVECs (87 nm), implicating this coupling distance in the larger store operated calcium entry responses observed in macrovascular cells. PMVECs exhibited a faster growth rate than did PAECs and, once a growth program was initiated by serum, PMVECs sustained growth in the absence of serum. Thus, PAECs and PMVECs differ in their structure and function, even under similar environmental conditions.
                Bookmark

                Author and article information

                Journal
                Pulm Circ
                Pulm Circ
                PUL
                sppul
                Pulmonary Circulation
                SAGE Publications (Sage UK: London, England )
                2045-8932
                2045-8940
                12 May 2017
                June 2017
                : 7
                : 2
                : 522-530
                Affiliations
                [1 ]Lupus Center of Excellence – Autoimmunity Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
                [2 ]Division of Endodontics at the Department of Restorative Dentistry and Comprehensive Care and the Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
                [3 ]Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
                Author notes
                [*]Kelly J. Shields, 312 E. North Avenue, Pittsburgh, PA 15212, USA. Email: kelly.shields@ 123456ahn.org
                Article
                10.1177_2045893217709001
                10.1177/2045893217709001
                5467946
                28597764
                ccceb3d8-4fc3-4877-9163-e224c2f1a7bb
                © The Author(s) 2017

                This article is distributed under the terms of the Creative Commons Attribution 4.0 License ( http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 21 December 2016
                : 19 April 2017
                Categories
                Research Articles
                Custom metadata
                April-June 2017

                Respiratory medicine
                lung vasculature,microct,sugen-hypoxic rat model of pah
                Respiratory medicine
                lung vasculature, microct, sugen-hypoxic rat model of pah

                Comments

                Comment on this article