14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Intestinal Eukaryotic and Bacterial Biome of Spotted Hyenas: The Impact of Social Status and Age on Diversity and Composition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In mammals, two factors likely to affect the diversity and composition of intestinal bacteria (bacterial microbiome) and eukaryotes (eukaryome) are social status and age. In species in which social status determines access to resources, socially dominant animals maintain better immune processes and health status than subordinates. As high species diversity is an index of ecosystem health, the intestinal biome of healthier, socially dominant animals should be more diverse than those of subordinates. Gradual colonization of the juvenile intestine after birth predicts lower intestinal biome diversity in juveniles than adults. We tested these predictions on the effect of: (1) age (juvenile/adult) and (2) social status (low/high) on bacterial microbiome and eukaryome diversity and composition in the spotted hyena ( Crocuta crocuta), a highly social, female-dominated carnivore in which social status determines access to resources. We comprehensively screened feces from 35 individually known adult females and 7 juveniles in the Serengeti ecosystem for bacteria and eukaryotes, using a set of 48 different amplicons (4 for bacterial 16S, 44 for eukaryote 18S) in a multi-amplicon sequencing approach. We compared sequence abundances to classical coprological egg or oocyst counts. For all parasite taxa detected in more than six samples, the number of sequence reads significantly predicted the number of eggs or oocysts counted, underscoring the value of an amplicon sequencing approach for quantitative measurements of parasite load. In line with our predictions, our results revealed a significantly less diverse microbiome in juveniles than adults and a significantly higher diversity of eukaryotes in high-ranking than low-ranking animals. We propose that free-ranging wildlife can provide an intriguing model system to assess the adaptive value of intestinal biome diversity for both bacteria and eukaryotes.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors.

            In vertebrates, including humans, individuals harbor gut microbial communities whose species composition and relative proportions of dominant microbial groups are tremendously varied. Although external and stochastic factors clearly contribute to the individuality of the microbiota, the fundamental principles dictating how environmental factors and host genetic factors combine to shape this complex ecosystem are largely unknown and require systematic study. Here we examined factors that affect microbiota composition in a large (n = 645) mouse advanced intercross line originating from a cross between C57BL/6J and an ICR-derived outbred line (HR). Quantitative pyrosequencing of the microbiota defined a core measurable microbiota (CMM) of 64 conserved taxonomic groups that varied quantitatively across most animals in the population. Although some of this variation can be explained by litter and cohort effects, individual host genotype had a measurable contribution. Testing of the CMM abundances for cosegregation with 530 fully informative SNP markers identified 18 host quantitative trait loci (QTL) that show significant or suggestive genome-wide linkage with relative abundances of specific microbial taxa. These QTL affect microbiota composition in three ways; some loci control individual microbial species, some control groups of related taxa, and some have putative pleiotropic effects on groups of distantly related organisms. These data provide clear evidence for the importance of host genetic control in shaping individual microbiome diversity in mammals, a key step toward understanding the factors that govern the assemblages of gut microbiota associated with complex diseases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                16 June 2017
                2017
                : 7
                : 262
                Affiliations
                [1] 1Research Group Ecology and Evolution of Molecular Parasite Host Interactions, Leibniz Institute for Zoo and Wildlife Research Berlin, Germany
                [2] 2Institute for Biology, Molecular Parasitology, Humboldt University Berlin, Germany
                [3] 3Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research Berlin, Germany
                Author notes

                Edited by: Susanne Hartmann, Freie Universität Berlin, Germany

                Reviewed by: Anastasios D. Tsaousis, University of Kent, United Kingdom; Jingwen Wang, Yale University, United States

                †Shared first author.

                Article
                10.3389/fcimb.2017.00262
                5472691
                28670573
                cd23d2ec-9a25-4704-8e66-3675a5a74e3f
                Copyright © 2017 Heitlinger, Ferreira, Thierer, Hofer and East.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 February 2017
                : 02 June 2017
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 103, Pages: 17, Words: 12119
                Funding
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Award ID: GRK 2046
                Categories
                Microbiology
                Original Research

                Infectious disease & Microbiology
                eukaryotome,eukaryome,parasites,amplicon sequencing,spotted hyena,social status,bacterial microbiome,age classes

                Comments

                Comment on this article