10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant Drought Tolerance Enhancement by Trehalose Production of Desiccation-Tolerant Microorganisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A collection of desiccation-tolerant xeroprotectant-producing microorganisms was screened for their ability to protect plants against drought, and their role as plant growth-promoting rhizobacteria was investigated in two different crops (tomato and pepper). The most commonly described biochemical mechanisms for plant protection against drought by microorganisms including the production of phytohormones, antioxidants and xeroprotectants were analyzed. In particular, the degree of plant protection against drought provided by these microorganisms was characterized. After studying the findings and comparing them with results of the closest taxonomic relatives at the species and strain levels, we propose that trehalose produced by these microorganisms is correlated with their ability to protect plants against drought. This proposal is based on the increased protection of plants against drought by the desiccation-sensitive microorganism Pseudomonas putida KT2440, which expresses the otsAB genes for trehalose biosynthesis in trans.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440.

          Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that has been certified as a biosafety host for the cloning of foreign genes. The bacterium also has considerable potential for biotechnological applications. Sequence analysis of the 6.18 Mb genome of strain KT2440 reveals diverse transport and metabolic systems. Although there is a high level of genome conservation with the pathogenic Pseudomonad Pseudomonas aeruginosa (85% of the predicted coding regions are shared), key virulence factors including exotoxin A and type III secretion systems are absent. Analysis of the genome gives insight into the non-pathogenic nature of P. putida and points to potential new applications in agriculture, biocatalysis, bioremediation and bioplastic production.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant-rhizobacteria interactions alleviate abiotic stress conditions.

            Root-colonizing non-pathogenic bacteria can increase plant resistance to biotic and abiotic stress factors. Bacterial inoculates have been applied as biofertilizers and can increase the effectiveness of phytoremediation. Inoculating plants with non-pathogenic bacteria can provide 'bioprotection' against biotic stresses, and some root-colonizing bacteria increase tolerance against abiotic stresses such as drought, salinity and metal toxicity. Systematic identification of bacterial strains providing cross-protection against multiple stressors would be highly valuable for agricultural production in changing environmental conditions. For bacterial cross-protection to be an effective tool, a better understanding of the underlying morphological, physiological and molecular mechanisms of bacterially mediated stress tolerance, and the phenomenon of cross-protection is critical. Beneficial bacteria-mediated plant gene expression studies under non-stress conditions or during pathogenic rhizobacteria-plant interactions are plentiful, but only few molecular studies on beneficial interactions under abiotic stress situations have been reported. Thus, here we attempt an overview of current knowledge on physiological impacts and modes of action of bacterial mitigation of abiotic stress symptoms in plants. Where available, molecular data will be provided to support physiological or morphological observations. We indicate further research avenues to enable better use of cross-protection capacities of root-colonizing non-pathogenic bacteria in agricultural production systems affected by a changing climate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid responses of soil microorganisms improve plant fitness in novel environments.

              Global change is challenging plant and animal populations with novel environmental conditions, including increased atmospheric CO(2) concentrations, warmer temperatures, and altered precipitation regimes. In some cases, contemporary or "rapid" evolution can ameliorate the effects of global change. However, the direction and magnitude of evolutionary responses may be contingent upon interactions with other community members that also are experiencing novel environmental conditions. Here, we examine plant adaptation to drought stress in a multigeneration experiment that manipulated aboveground-belowground feedbacks between plants and soil microbial communities. Although drought stress reduced plant growth and accelerated plant phenologies, surprisingly, plant evolutionary responses to drought were relatively weak. In contrast, plant fitness in both drought and nondrought environments was linked strongly to the rapid responses of soil microbial community structure to moisture manipulations. Specifically, plants were most fit when their contemporary environmental conditions (wet vs. dry soil) matched the historical environmental conditions (wet vs. dry soil) of their associated microbial community. Together, our findings suggest that, when faced with environmental change, plants may not be limited to "adapt or migrate" strategies; instead, they also may benefit from association with interacting species, especially diverse soil microbial communities, that respond rapidly to environmental change.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                30 September 2016
                2016
                : 7
                : 1577
                Affiliations
                Institute for Water Research, and Department of Microbiology, University of Granada Granada, Spain
                Author notes

                Edited by: Pierre-Emmanuel Courty, University of Fribourg, Switzerland

                Reviewed by: David Dowling, Institute of Technology Carlow, Ireland; Ali SkZ, Agri Biotech Foundation, India; Catalina Cabot, Universitat de les Illes Balears, Spain

                *Correspondence: Maximino Manzanera, manzanera@ 123456ugr.es

                This article was submitted to Plant Biotic Interactions, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2016.01577
                5043138
                27746776
                cd8cd171-7d86-417c-9bc5-45e90497a42c
                Copyright © 2016 Vílchez, García-Fontana, Román-Naranjo, González-López and Manzanera.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 July 2016
                : 21 September 2016
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 57, Pages: 11, Words: 0
                Funding
                Funded by: Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía 10.13039/501100002878
                Award ID: P11-RNM-7844
                Funded by: Ministerio de Ciencia e Innovación 10.13039/501100004837
                Award ID: CTM2009-09270
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                desiccation tolerance,rhizobacterial drought-tolerance enhancers (rdte),plant-growth-promoting rhizobacteria (pgpr),trehalose,pseudomonas putida kt2440

                Comments

                Comment on this article