14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Three-dimensional cell culture models for anticancer drug screening: Worth the effort?

      , , , ,
      Journal of Cellular Physiology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Capturing complex 3D tissue physiology in vitro.

          The emergence of tissue engineering raises new possibilities for the study of complex physiological and pathophysiological processes in vitro. Many tools are now available to create 3D tissue models in vitro, but the blueprints for what to make have been slower to arrive. We discuss here some of the 'design principles' for recreating the interwoven set of biochemical and mechanical cues in the cellular microenvironment, and the methods for implementing them. We emphasize applications that involve epithelial tissues for which 3D models could explain mechanisms of disease or aid in drug development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in three-dimensional multicellular spheroid culture for biomedical research.

            Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytochrome p450 and chemical toxicology.

              The field of cytochrome P450 (P450) research has developed considerably over the past 20 years, and many important papers on the roles of P450s in chemical toxicology have appeared in Chemical Research in Toxicology. Today, our basic understanding of many of the human P450s is relatively well-established, in terms of the details of the individual genes, sequences, and basic catalytic mechanisms. Crystal structures of several of the major human P450s are now in hand. The animal P450s are still important in the context of metabolism and safety testing. Many well-defined examples exist for roles of P450s in decreasing the adverse effects of drugs through biotransformation, and an equally interesting field of investigation is the bioactivation of chemicals, including drugs. Unresolved problems include the characterization of the minor "orphan" P450s, ligand cooperativity and kinetic complexity of several P450s, the prediction of metabolism, the overall contribution of bioactivation to drug idiosyncratic problems, the extrapolation of animal test results to humans in drug development, and the contribution of genetic variation in human P450s to cancer incidence.
                Bookmark

                Author and article information

                Journal
                Journal of Cellular Physiology
                J Cell Physiol
                Wiley-Blackwell
                00219541
                April 2018
                April 11 2018
                : 233
                : 4
                : 2993-3003
                Article
                10.1002/jcp.26052
                28618001
                cde976a9-d4f2-4e84-a74c-5e4e01eeef14
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article