6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      In Vitro and ex Vivo Intestinal Tissue Models to Measure Mucoadhesion of Poly (Methacrylate) and N-Trimethylated Chitosan Polymers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization.

            We have grown an antimicrobial polymer directly on the surfaces of glass and paper using atom transfer radical polymerization (ATRP). The method described here results in potentially permanent nonleaching antibacterial surfaces without the need to chemically graft the antimicrobial material to the substratum. The tertiary amine 2-(dimethylamino)ethyl methacrylate was polymerized directly onto Whatman #1 filter paper or glass slides via atom transfer radical polymerization. Following the polymerization, the tertiary amino groups were quaternized using an alkyl halide to produce a large concentration of quaternary ammonium groups on the polymer-modified surfaces. Incubating the modified materials with either Escherichia coli or Bacillus subtilis demonstrated that the modified surfaces had substantial antimicrobial capacity. The permanence of the antimicrobial activity was demonstrated through repeated use of a modified glass without significant loss of activity. Quaternary amines are believed to cause cell death by disrupting cell membranes allowing release of the intracellular contents. Atomic force microscopic imaging of cells on modified glass surfaces supports this hypothesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mucins in the gastrointestinal tract in health and disease.

              Mucins form part of the dynamic, interactive mucosal defensive system active at the mucosal surface of the gastrointestinal tract. They are carbohydrate rich glycoproteins with unique molecular structure and chemical properties. The family of mucin (MUC) genes has 13 members that can be divided into secreted and membrane-associated forms each with characteristic protein domains and tissue specific glycosylation. Biosynthetic pathways have been described for the secreted and membrane-associated mucins and their eventual degradation and turnover. Mucins are present at all mucosal surfaces throughout the body in typical combinations and relate to the demands of organ function. Patterns of MUC gene expression with gastrointestinal site specific glycosylation are clearly important but are not yet well defined. Mucin production during fetal development shows distinct patterns that may correlate in many cases with neoplastic expression in adult life. An increasing number of protective proteins have been identified that appear in the adherent mucus layer at the mucosal surface. These proteins are co-secreted with mucins in some cases, interact with mucins at a molecular level through peptide and carbohydrate sites or benefit from the viscoelastic, aqueous environment afforded by the mucus gel to effect their defensive roles. The mechanism of many of these interaction remains to be elucidated but is clearly part of an integrated innate and adaptive mucosal defensive system relying on the mucins as an integral component to provide a mucus gel. Recent improvements in the description of MUC gene expression and mature mucin synthesis in the healthy gastrointestinal tract has formed a basis for assessment of mucosal disease at sites throughout the tract. Pathological patterns of mucin expression in disease appear to follow tissue phenotype, so that gastric and intestinal types can be defined and appear in metaplasia in e.g. esophagus and stomach. Adaptation of previous mucin based, histochemical classification of intestinal metaplasia to assess MUC gene expression has proved helpful and promises greater value if reliably combined with mucin linked glycosylation markers. Few changes in MUC gene expression or polymorphism have been detected in inflammatory bowel diseases in contrast to malignant transformation. Glycosylation changes however, are evident in both types of disease and appear to be early events in disease pathogenesis. Review of the major mucosal diseases affecting the gastrointestinal tract in childhood reveals parallel patterns to those found in adult pathology, but with some novel conditions arising through the developmental stages at lactation and weaning. The impact of bacterial colonization and nutrition at these stages of life are important in the evaluation of mucosal responses in pediatric disease.
                Bookmark

                Author and article information

                Journal
                Pharmaceutical Research
                Pharm Res
                Springer Nature
                0724-8741
                1573-904X
                January 2005
                January 1 2005
                January 2005
                : 22
                : 1
                : 38-49
                Article
                10.1007/s11095-004-9007-1
                cdffbcc1-ece3-4401-85d0-706d4c379d50
                © 2005
                History

                Comments

                Comment on this article