13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accumulation and expression of multiple antibiotic resistance genes in Arcobacter cryaerophilus that thrives in sewage

      research-article
      ,
      PeerJ
      PeerJ Inc.
      Arcobacter cryaerophilus, Sewage, Multidrug resistance

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We explored the bacterial diversity of untreated sewage influent samples of a wastewater treatment plant in Tucson, AZ and discovered that Arcobacter cryaerophilus, an emerging human pathogen of animal origin, was the most dominant bacterium. The other highly prevalent bacteria were members of the phyla Bacteroidetes and Firmicutes, which are major constituents of human gut microbiome, indicating that bacteria of human and animal origin intermingle in sewage. By assembling a near-complete genome of A. cryaerophilus, we show that the bacterium has accumulated a large number of antibiotic resistance genes (ARGs) probably enabling it to thrive in the wastewater. We also determined that a majority of ARGs was being expressed in sewage, suggestive of trace levels of antibiotics or other stresses that could act as a selective force that amplifies multidrug resistant bacteria in municipal sewage. Because all bacteria are not eliminated even after several rounds of wastewater treatment, ARGs in sewage could affect public health due to their potential to contaminate environmental water.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The comprehensive antibiotic resistance database.

          The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review.

            Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics' release into the environment. The occurrence of antibiotics may promote the selection of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), which shade health risks to humans and animals. In this paper the fate of ARB and ARGs in UWTPs, focusing on different processes/technologies (i.e., biological processes, advanced treatment technologies and disinfection), was critically reviewed. The mechanisms by which biological processes influence the development/selection of ARB and ARGs transfer are still poorly understood. Advanced treatment technologies and disinfection process are regarded as a major tool to control the spread of ARB into the environment. In spite of intense efforts made over the last years to bring solutions to control antibiotic resistance spread in the environment, there are still important gaps to fill in. In particular, it is important to: (i) improve risk assessment studies in order to allow accurate estimates about the maximal abundance of ARB in UWTPs effluents that would not pose risks for human and environmental health; (ii) understand the factors and mechanisms that drive antibiotic resistance maintenance and selection in wastewater habitats. The final objective is to implement wastewater treatment technologies capable of assuring the production of UWTPs effluents with an acceptable level of ARB. Copyright © 2013 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotics and antibiotic resistance in water environments.

              Antibiotic-resistant organisms enter into water environments from human and animal sources. These bacteria are able to spread their genes into water-indigenous microbes, which also contain resistance genes. On the contrary, many antibiotics from industrial origin circulate in water environments, potentially altering microbial ecosystems. Risk assessment protocols for antibiotics and resistant bacteria in water, based on better systems for antibiotics detection and antibiotic-resistance microbial source tracking, are starting to be discussed. Methods to reduce resistant bacterial load in wastewaters, and the amount of antimicrobial agents, in most cases originated in hospitals and farms, include optimization of disinfection procedures and management of wastewater and manure. A policy for preventing mixing human-originated and animal-originated bacteria with environmental organisms seems advisable.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                25 April 2017
                2017
                : 5
                : e3269
                Affiliations
                [-1]Biology Department, Portland State University , Portland, OR, United States
                Article
                3269
                10.7717/peerj.3269
                5407278
                28462059
                ce1f4c46-6708-4add-bb5c-8bb809bb6cad
                ©2017 Millar and Raghavan

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 30 November 2016
                : 3 April 2017
                Funding
                Funded by: Portland State University
                This work was supported by Portland State University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Environmental Sciences
                Genomics
                Microbiology

                arcobacter cryaerophilus,sewage,multidrug resistance

                Comments

                Comment on this article