9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ste24: An Integral Membrane Protein Zinc Metalloprotease with Provocative Structure and Emergent Biology

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ste24, an integral membrane protein zinc metalloprotease, is found in every kingdom of eukaryotes. It was discovered approximately 20 years ago by yeast genetic screens identifying it as a factor responsible for processing the yeast mating a-factor pheromone. In animals, Ste24 processes prelamin A, a component of the nuclear lamina; mutations in the human ortholog of Ste24 diminish its activity, giving rise to genetic diseases of accelerated aging (progerias). Additionally, lipodystrophy, acquired from the standard highly active antiretroviral therapy used to treat AIDS patients, likely results from off-target interactions of HIV (aspartyl) protease inhibitor drugs with Ste24. Ste24 possesses a novel “α-barrel” structure, consisting of a ring of seven transmembrane α-helices enclosing a large (> 12,000 Å 3) interior volume that contains the active-site and substrate-binding region; this “membrane-interior reaction chamber” is unprecedented in integral membrane protein structures. Additionally, the surface of the membrane-interior reaction chamber possesses a strikingly large negative electrostatic surface potential, adding additional “functional mystery.” Recent publications implicate Ste24 as a key factor in several endoplasmic reticulum processes, including the unfolded protein response, a cellular stress response of the endoplasmic reticulum, and removal of misfolded proteins from the translocon. Ste24, with its provocative structure, enigmatic mechanism, and recently emergent new biological roles including “translocon unclogger” and (non-enyzmatic) broad-spectrum viral restriction factor, presents far differently than before 2016, when it was viewed as a “CAAX protease” responsible for cleavage of prenylated (farnesylated or geranylgeranylated) substrates. The emphasis of this review is on Ste24 of the “Post-CAAX-Protease Era.”

          Graphical abstract

          Highlights

          • Ste24 is a eukaryotic integral membrane protein of novel structure.

          • Ste24 is a gluzincin ZMP whose structure/function relationships are poorly explored.

          • ZMP core, ZMP accessory, and “ɑ-barrel modules form the Ste24 tripartite architecture.

          • Emergent biology of Ste24 includes roles as a translocon unclogger and a viral restriction factor.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          CASTp 3.0: computed atlas of surface topography of proteins

          Abstract Geometric and topological properties of protein structures, including surface pockets, interior cavities and cross channels, are of fundamental importance for proteins to carry out their functions. Computed Atlas of Surface Topography of proteins (CASTp) is a web server that provides online services for locating, delineating and measuring these geometric and topological properties of protein structures. It has been widely used since its inception in 2003. In this article, we present the latest version of the web server, CASTp 3.0. CASTp 3.0 continues to provide reliable and comprehensive identifications and quantifications of protein topography. In addition, it now provides: (i) imprints of the negative volumes of pockets, cavities and channels, (ii) topographic features of biological assemblies in the Protein Data Bank, (iii) improved visualization of protein structures and pockets, and (iv) more intuitive structural and annotated information, including information of secondary structure, functional sites, variant sites and other annotations of protein residues. The CASTp 3.0 web server is freely accessible at http://sts.bioe.uic.edu/castp/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fusion of Enveloped Viruses in Endosomes

            To initiate infection, enveloped viruses must fuse with a cell membrane, a process mediated by a dedicated viral fusion protein. To date, these proteins group into three basic structural classes. Most require priming (via a protease) to prepare them to respond to a fusion‐triggering signal. Known fusion triggers include receptors, low pH and proteases (and combinations thereof). Here, we provide an update on viral fusion protein priming and triggering, with a focus on virus fusion in endosomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nuclear lamins and laminopathies.

              Nuclear lamins are intermediate filament proteins that polymerize to form the nuclear lamina on the inner aspect of the inner nuclear membrane. Long known to be essential for maintaining nuclear structure and disassembling/reassembling during mitosis in metazoans, research over the past dozen years has shown that mutations in genes encoding nuclear lamins, particularly LMNA encoding the A-type lamins, cause a broad range of diverse diseases, often referred to as laminopathies. Lamins are expressed in all mammalian somatic cells but mutations in their genes lead to relatively tissue-selective disease phenotypes in most cases. While mutations causing laminopathies have been shown to produce abnormalities in nuclear morphology, how these disease-causing mutations or resultant alterations in nuclear structure lead to pathology is only starting to be understood. Despite the incomplete understanding of pathogenic mechanisms underlying the laminopathies, basic research in cellular and small animal models has produced promising leads for treatments of these rare diseases. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Mol Biol
                J. Mol. Biol
                Journal of Molecular Biology
                Elsevier Ltd.
                0022-2836
                1089-8638
                19 March 2020
                19 March 2020
                Affiliations
                Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
                Author notes
                [* ]Corresponding author. mwiener@ 123456virginia.edu
                Article
                S0022-2836(20)30237-0
                10.1016/j.jmb.2020.03.016
                7172729
                32199981
                ced8e367-7470-4920-85cf-df33695cdc69
                © 2020 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 28 December 2019
                : 6 March 2020
                : 12 March 2020
                Categories
                Article

                Molecular biology
                zmp, zinc metalloprotease,tm, transmembrane,l5d, loop 5 domain,ctd, c-terminal domain,ste24,metalloprotease,membrane protein,gluzincin,α-barrel.

                Comments

                Comment on this article