36
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Coronavirus disease 2019 (COVID-19) pandemic continues to spread across the world. Hence, there is an urgent need for rapid, simple, and accurate tests to diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Performance characteristics of the rapid SARS-CoV-2 antigen detection test should be evaluated and compared with the gold standard real-time reverse transcription-polymerase chain reaction (RT-PCR) test for diagnosis of COVID-19 cases.

          Methods

          The rapid SARS-CoV-2 antigen detection test, Standard™ Q COVID-19 Ag kit (SD Biosensor®, Republic of Korea), was compared with the real-time RT-PCR test, Allplex™ 2019-nCoV Assay (Seegene®, Korea) for detection of SARS-CoV-2 in respiratory specimens. Four hundred fifty-four respiratory samples (mainly nasopharyngeal and throat swabs) were obtained from COVID-19 suspected cases and contact individuals, including pre-operative patients at Siriraj Hospital, Bangkok, Thailand during March–May 2020.

          Results

          Of 454 respiratory samples, 60 (13.2%) were positive, and 394 (86.8%) were negative for SARS-CoV-2 RNA by real-time RT-PCR assay. The duration from onset to laboratory test in COVID-19 suspected cases and contact individuals ranged from 0 to 14 days with a median of 3 days. The rapid SARS-CoV-2 antigen detection test’s sensitivity and specificity were 98.33% (95% CI, 91.06–99.96%) and 98.73% (95% CI, 97.06–99.59%), respectively. One false negative test result was from a sample with a high real-time RT-PCR cycle threshold (Ct), while five false positive test results were from specimens of pre-operative patients.

          Conclusions

          The rapid assay for SARS-CoV-2 antigen detection showed comparable sensitivity and specificity with the real-time RT-PCR assay. Thus, there is a potential use of this rapid and simple SARS-CoV-2 antigen detection test as a screening assay.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

          Background The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur. Aim We aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available. Methods Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology. Results The workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive – Global (EVAg), a European Union infrastructure project. Conclusion The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients

            To the Editor: The 2019 novel coronavirus (SARS-CoV-2) epidemic, which was first reported in December 2019 in Wuhan, China, and has been declared a public health emergency of international concern by the World Health Organization, may progress to a pandemic associated with substantial morbidity and mortality. SARS-CoV-2 is genetically related to SARS-CoV, which caused a global epidemic with 8096 confirmed cases in more than 25 countries in 2002–2003. 1 The epidemic of SARS-CoV was successfully contained through public health interventions, including case detection and isolation. Transmission of SARS-CoV occurred mainly after days of illness 2 and was associated with modest viral loads in the respiratory tract early in the illness, with viral loads peaking approximately 10 days after symptom onset. 3 We monitored SARS-CoV-2 viral loads in upper respiratory specimens obtained from 18 patients (9 men and 9 women; median age, 59 years; range, 26 to 76) in Zhuhai, Guangdong, China, including 4 patients with secondary infections (1 of whom never had symptoms) within two family clusters (Table S1 in the Supplementary Appendix, available with the full text of this letter at NEJM.org). The patient who never had symptoms was a close contact of a patient with a known case and was therefore monitored. A total of 72 nasal swabs (sampled from the mid-turbinate and nasopharynx) (Figure 1A) and 72 throat swabs (Figure 1B) were analyzed, with 1 to 9 sequential samples obtained from each patient. Polyester flock swabs were used for all the patients. From January 7 through January 26, 2020, a total of 14 patients who had recently returned from Wuhan and had fever (≥37.3°C) received a diagnosis of Covid-19 (the illness caused by SARS-CoV-2) by means of reverse-transcriptase–polymerase-chain-reaction assay with primers and probes targeting the N and Orf1b genes of SARS-CoV-2; the assay was developed by the Chinese Center for Disease Control and Prevention. Samples were tested at the Guangdong Provincial Center for Disease Control and Prevention. Thirteen of 14 patients with imported cases had evidence of pneumonia on computed tomography (CT). None of them had visited the Huanan Seafood Wholesale Market in Wuhan within 14 days before symptom onset. Patients E, I, and P required admission to intensive care units, whereas the others had mild-to-moderate illness. Secondary infections were detected in close contacts of Patients E, I, and P. Patient E worked in Wuhan and visited his wife (Patient L), mother (Patient D), and a friend (Patient Z) in Zhuhai on January 17. Symptoms developed in Patients L and D on January 20 and January 22, respectively, with viral RNA detected in their nasal and throat swabs soon after symptom onset. Patient Z reported no clinical symptoms, but his nasal swabs (cycle threshold [Ct] values, 22 to 28) and throat swabs (Ct values, 30 to 32) tested positive on days 7, 10, and 11 after contact. A CT scan of Patient Z that was obtained on February 6 was unremarkable. Patients I and P lived in Wuhan and visited their daughter (Patient H) in Zhuhai on January 11 when their symptoms first developed. Fever developed in Patient H on January 17, with viral RNA detected in nasal and throat swabs on day 1 after symptom onset. We analyzed the viral load in nasal and throat swabs obtained from the 17 symptomatic patients in relation to day of onset of any symptoms (Figure 1C). Higher viral loads (inversely related to Ct value) were detected soon after symptom onset, with higher viral loads detected in the nose than in the throat. Our analysis suggests that the viral nucleic acid shedding pattern of patients infected with SARS-CoV-2 resembles that of patients with influenza 4 and appears different from that seen in patients infected with SARS-CoV. 3 The viral load that was detected in the asymptomatic patient was similar to that in the symptomatic patients, which suggests the transmission potential of asymptomatic or minimally symptomatic patients. These findings are in concordance with reports that transmission may occur early in the course of infection 5 and suggest that case detection and isolation may require strategies different from those required for the control of SARS-CoV. How SARS-CoV-2 viral load correlates with culturable virus needs to be determined. Identification of patients with few or no symptoms and with modest levels of detectable viral RNA in the oropharynx for at least 5 days suggests that we need better data to determine transmission dynamics and inform our screening practices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19)

              An unprecedented outbreak of pneumonia of unknown aetiology in Wuhan City, Hubei province in China emerged in December 2019. A novel coronavirus was identified as the causative agent and was subsequently termed COVID-19 by the World Health Organization (WHO). Considered a relative of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), COVID-19 is caused by a betacoronavirus named SARS-CoV-2 that affects the lower respiratory tract and manifests as pneumonia in humans. Despite rigorous global containment and quarantine efforts, the incidence of COVID-19 continues to rise, with 90,870 laboratory-confirmed cases and over 3,000 deaths worldwide. In response to this global outbreak, we summarise the current state of knowledge surrounding COVID-19.
                Bookmark

                Author and article information

                Contributors
                navin.hor@mahidol.ac.th
                Journal
                Virol J
                Virol J
                Virology Journal
                BioMed Central (London )
                1743-422X
                13 November 2020
                13 November 2020
                2020
                : 17
                : 177
                Affiliations
                [1 ]GRID grid.10223.32, ISNI 0000 0004 1937 0490, Department of Microbiology, Faculty of Medicine Siriraj Hospital, , Mahidol University, ; Bangkok, Thailand
                [2 ]GRID grid.10223.32, ISNI 0000 0004 1937 0490, Department of Medicine, Faculty of Medicine Siriraj Hospital, , Mahidol University, ; Bangkok, Thailand
                [3 ]GRID grid.10223.32, ISNI 0000 0004 1937 0490, Department of Surgery, Faculty of Medicine Siriraj Hospital, , Mahidol University, ; Bangkok, Thailand
                [4 ]GRID grid.10223.32, ISNI 0000 0004 1937 0490, Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, , Mahidol University, ; Bangkok, Thailand
                [5 ]GRID grid.10223.32, ISNI 0000 0004 1937 0490, Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, , Mahidol University, ; Bangkok, Thailand
                Author information
                http://orcid.org/0000-0001-9109-1259
                Article
                1452
                10.1186/s12985-020-01452-5
                7665091
                33187528
                cf10255c-5e43-468a-812c-51b32bc08c1f
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 4 August 2020
                : 5 November 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100013238, Faculty of Medicine Siriraj Hospital, Mahidol University;
                Award ID: R016034012
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Microbiology & Virology
                covid-19,sars-cov-2,rapid antigen,rt-pcr,thailand
                Microbiology & Virology
                covid-19, sars-cov-2, rapid antigen, rt-pcr, thailand

                Comments

                Comment on this article