96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversified Carbohydrate-Binding Lectins from Marine Resources

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Marine bioresources produce a great variety of specific and potent bioactive molecules including natural organic compounds such as fatty acids, polysaccharides, polyether, peptides, proteins, and enzymes. Lectins are also one of the promising candidates for useful therapeutic agents because they can recognize the specific carbohydrate structures such as proteoglycans, glycoproteins, and glycolipids, resulting in the regulation of various cells via glycoconjugates and their physiological and pathological phenomenon through the host-pathogen interactions and cell-cell communications. Here, we review the multiple lectins from marine resources including fishes and sea invertebrate in terms of their structure-activity relationships and molecular evolution. Especially, we focus on the unique structural properties and molecular evolution of C-type lectins, galectin, F-type lectin, and rhamnose-binding lectin families.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: found
          • Article: not found

          The C-type lectin-like domain superfamily.

          The superfamily of proteins containing C-type lectin-like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions. The CTLD structure has a characteristic double-loop ('loop-in-a-loop') stabilized by two highly conserved disulfide bridges located at the bases of the loops, as well as a set of conserved hydrophobic and polar interactions. The second loop, called the long loop region, is structurally and evolutionarily flexible, and is involved in Ca2+-dependent carbohydrate binding and interaction with other ligands. This loop is completely absent in a subset of CTLDs, which we refer to as compact CTLDs; these include the Link/PTR domain and bacterial CTLDs. CTLD-containing proteins (CTLDcps) were originally classified into seven groups based on their overall domain structure. Analyses of the superfamily representation in several completely sequenced genomes have added 10 new groups to the classification, and shown that it is applicable only to vertebrate CTLDcps; despite the abundance of CTLDcps in the invertebrate genomes studied, the domain architectures of these proteins do not match those of the vertebrate groups. Ca2+-dependent carbohydrate binding is the most common CTLD function in vertebrates, and apparently the ancestral one, as suggested by the many humoral defense CTLDcps characterized in insects and other invertebrates. However, many CTLDs have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade-specific snake venoms, and fish antifreeze and bird egg-shell proteins. Recent studies highlight the functional versatility of this protein superfamily and the CTLD scaffold, and suggest further interesting discoveries have yet to be made.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp.

            Griffithsin (GRFT), a novel anti-HIV protein, was isolated from an aqueous extract of the red alga Griffithsia sp. The 121-amino acid sequence of GRFT has been determined, and biologically active GRFT was subsequently produced by expression of a corresponding DNA sequence in Escherichia coli. Both native and recombinant GRFT displayed potent antiviral activity against laboratory strains and primary isolates of T- and M- tropic HIV-1 with EC50 values ranging from 0.043 to 0.63 nM. GRFT also aborted cell-to-cell fusion and transmission of HIV-1 infection at similar concentrations. High concentrations (e.g. 783 nM) of GRFT were not lethal to any tested host cell types. GRFT blocked CD4-dependent glycoprotein (gp) 120 binding to receptor-expressing cells and bound to viral coat glycoproteins (gp120, gp41, and gp160) in a glycosylation-dependent manner. GRFT preferentially inhibited gp120 binding of the monoclonal antibody (mAb) 2G12, which recognizes a carbohydrate-dependent motif, and the (mAb) 48d, which binds to CD4-induced epitope. In addition, GRFT moderately interfered with the binding of gp120 to sCD4. Further data showed that the binding of GRFT to soluble gp120 was inhibited by the monosaccharides glucose, mannose, and N-acetylglucosamine but not by galactose, xylose, fucose, N-acetylgalactosamine, or sialic acid-containing glycoproteins. Taken together these data suggest that GRFT is a new type of lectin that binds to various viral glycoproteins in a monosaccharide-dependent manner. GRFT could be a potential candidate microbicide to prevent the sexual transmission of HIV and AIDS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lecticans: organizers of the brain extracellular matrix.

              Lecticans are a family of chondroitin sulfate proteoglycans, encompassing aggrecan, versican, neurocan and brevican. These proteoglycans are characterized by the presence of a hyaluronan-binding domain and a C-type lectin domain in their core proteins. Through these domains, lecticans interact with carbohydrate and protein ligands in the extracellular matrix and act as linkers of these extracellular matrix molecules. In adult brain, lecticans are thought to interact with hyaluronan and tenascin-R to form a ternary complex. We propose that the hyaluronan-lectican-tenascin-R complex constitutes the core assembly of the adult brain extracellular matrix, which is found mainly in pericellular spaces of neurons as 'perineuronal nets'.
                Bookmark

                Author and article information

                Journal
                J Amino Acids
                JAA
                Journal of Amino Acids
                SAGE-Hindawi Access to Research
                2090-0104
                2090-0112
                2011
                15 November 2011
                : 2011
                : 838914
                Affiliations
                Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
                Author notes

                Academic Editor: Faouzi Ben Rebah

                Article
                10.4061/2011/838914
                3269628
                22312473
                cf4a501e-2267-4899-95f9-3f5d6ed07502
                Copyright © 2011 Tomohisa Ogawa et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 May 2011
                : 13 August 2011
                Categories
                Review Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article