6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cationization-Enhanced Type I and Type II ROS Generation for Photodynamic Treatment of Drug-Resistant Bacteria

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          Aggregation-Induced Emission: Together We Shine, United We Soar!

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generation and Detection of Reactive Oxygen Species in Photocatalysis.

            The detection methods and generation mechanisms of the intrinsic reactive oxygen species (ROS), i.e., superoxide anion radical (•O2-), hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl radical (•OH) in photocatalysis, were surveyed comprehensively. Consequently, the major photocatalyst used in heterogeneous photocatalytic systems was found to be TiO2. However, besides TiO2 some representative photocatalysts were also involved in the discussion. Among the various issues we focused on the detection methods and generation reactions of ROS in the aqueous suspensions of photocatalysts. On the careful account of the experimental results presented so far, we proposed the following apprehension: adsorbed •OH could be regarded as trapped holes, which are involved in a rapid adsorption-desorption equilibrium at the TiO2-solution interface. Because the equilibrium shifts to the adsorption side, trapped holes must be actually the dominant oxidation species whereas •OH in solution would exert the reactivity mainly for nonadsorbed reactants. The most probable routes of generating intrinsic ROS at the surfaces of two polymorphs of TiO2, anatase and rutile, were discussed along with some plausible rational reaction processes. In addition to the four major ROS, three ROS, that is organic peroxides, ozone, and nitric oxide, which are less common in photocatalysis are also briefly reviewed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Reactive Oxygen Species (ROS)-Based Nanomedicine

                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Nano
                ACS Nano
                American Chemical Society (ACS)
                1936-0851
                1936-086X
                June 28 2022
                May 18 2022
                June 28 2022
                : 16
                : 6
                : 9130-9141
                Affiliations
                [1 ]State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
                [2 ]School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China
                Article
                10.1021/acsnano.2c01206
                35584060
                cf8cd98c-56f2-43e6-84aa-6bfb956a11b6
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article