3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiple Factors Determine the Structure of Bacterial Communities Associated With Aedes albopictus Under Artificial Rearing Conditions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Insect symbionts are major manipulators of host’s behavior. Their effect on parameters such as fecundity, male mating competitiveness, and biological quality in general, can have a major influence on the effectiveness of the sterile insect technique (SIT). SIT is currently being developed and applied against human disease vectors, including Ae. albopictus, as an environment-friendly method of population suppression, therefore there is a renewed interest on both the characterization of gut microbiota and their exploitation in artificial rearing. In the present study, bacterial communities of eggs, larvae, and adults (both males and females) of artificially reared Ae. albopictus, were characterized using both culture-dependent and culture-independent approaches. Mosquito-associated bacteria corresponding to thirteen and five bacteria genera were isolated from the larval food and the sugar solution (adult food), respectively. The symbiont community of the females was affected by the provision of a blood meal. Pseudomonas and Enterobacter were either introduced or enhanced with the blood meal, whereas Serratia were relatively stable during the adult stage of females. Maintenance of these taxa in female guts is probably related with blood digestion. Gut-associated microbiota of males and females were different, starting early after emergence and continuing in older stages. Our results indicate that eggs contained bacteria from more than fifteen genera including Bacillus, Chryseobacterium, and Escherichia–Shigella, which were also main components of gut microbiota of female adults before and after blood feeding, indicating potential transmission among generations. Our results provided a thorough study of the egg- and gut-associated bacteria of artificially reared Ae. albopictus, which can be important for further studies using probiotic bacteria to improve the effectiveness of mosquito artificial rearing and SIT applications.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA.

          Using a set of synthetic oligonucleotides homologous to broadly conserved sequences in-vitro amplification via the polymerase chain reaction followed by direct sequencing results in almost complete nucleotide determination of a gene coding for 16S ribosomal RNA. As a model system the nucleotide sequence of the 16S rRNA gene of M.kansasii was determined and found to be 98.7% homologous to that of M.bovis BCG. This is the first report on a contiguous sequence information of an entire amplified gene spanning 1.5 kb without any subcloning procedures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The gut bacteria of insects: nonpathogenic interactions.

            The diversity of the Insecta is reflected in the large and varied microbial communities inhabiting the gut. Studies, particularly with termites and cockroaches, have focused on the nutritional contributions of gut bacteria in insects living on suboptimal diets. The indigenous gut bacteria, however, also play a role in withstanding the colonization of the gut by non-indigenous species including pathogens. Gut bacterial consortia adapt by the transfer of plasmids and transconjugation between bacterial strains, and some insect species provide ideal conditions for bacterial conjugation, which suggests that the gut is a "hot spot" for gene transfer. Genomic analysis provides new avenues for the study of the gut microbial community and will reveal the molecular foundations of the relationships between the insect and its microbiome. In this review the intestinal bacteria is discussed in the context of developing our understanding of symbiotic relationships, of multitrophic interactions between insects and plant or animal host, and in developing new strategies for controlling insect pests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiorganismal insects: diversity and function of resident microorganisms.

              All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                15 April 2020
                2020
                : 11
                : 605
                Affiliations
                [1] 1Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture , Vienna, Austria
                [2] 2Beneficial Insects Institute, Fujian Agriculture & Forestry University , Fuzhou, China
                [3] 3Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University–Michigan State University Joint Center of Vector Control for Tropical Diseases, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou, China
                [4] 4Department of Environmental Engineering, University of Patras , Agrinio, Greece
                [5] 5Institut de Recherche en Sciences de la Santé/Direction Régionale de l’Ouest , Bobo-Dioulasso, Burkina Faso
                Author notes

                Edited by: Rachel Susan Poretsky, The University of Illinois at Chicago, United States

                Reviewed by: Guido Favia, University of Camerino, Italy; Claire Valiente Moro, Université Claude Bernard Lyon 1, France

                *Correspondence: Kostas Bourtzis, K.Bourtzis@ 123456iaea.org

                These authors have contributed equally to this work

                Present address: Antonios Augustinos, Department of Plant Protection Patras, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization - Demeter, Patras, Greece

                This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.00605
                7176356
                32351473
                d0922d20-d995-4283-a951-c3352b478ed4
                Copyright © 2020 Chen, Zhang, Augustinos, Doudoumis, Bel Mokhtar, Maiga, Tsiamis and Bourtzis.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 November 2019
                : 18 March 2020
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 114, Pages: 18, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                aedes albopictus,gut,microbiota,artificial rearing,sit,culture-dependent,culture-independent

                Comments

                Comment on this article