36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Whole-genome annotation by using evidence integration in functional-linkage networks

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The advent of high-throughput biology has catalyzed a remarkable improvement in our ability to identify new genes. A large fraction of newly discovered genes have an unknown functional role, particularly when they are specific to a particular lineage or organism. These genes, currently labeled "hypothetical," might support important biological cell functions and could potentially serve as targets for medical, diagnostic, or pharmacogenomic studies. An important challenge to the scientific community is to associate these newly predicted genes with a biological function that can be validated by experimental screens. In the absence of sequence or structural homology to known genes, we must rely on advanced biotechnological methods, such as DNA chips and protein-protein interaction screens as well as computational techniques to assign putative functions to these genes. In this article, we propose an effective methodology for combining biological evidence obtained in several high-throughput experimental screens and integrating this evidence in a way that provides consistent functional assignments to hypothetical genes. We use the visualization method of propagation diagrams to illustrate the flow of functional evidence that supports the functional assignments produced by the algorithm. Our results contain a number of predictions and furnish strong evidence that integration of functional information is indeed a promising direction for improving the accuracy and robustness of functional genomics.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.

          Two large-scale yeast two-hybrid screens were undertaken to identify protein-protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with each transformant expressing one of the open reading frames as a fusion to an activation domain. This array was screened by a simple and automated procedure for 192 yeast proteins, with positive responses identified by their positions in the array. In a second approach, we pooled cells expressing one of about 6,000 activation domain fusions to generate a library. We used a high-throughput screening procedure to screen nearly all of the 6,000 predicted yeast proteins, expressed as Gal4 DNA-binding domain fusion proteins, against the library, and characterized positives by sequence analysis. These approaches resulted in the detection of 957 putative interactions involving 1,004 S. cerevisiae proteins. These data reveal interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes. The results of these screens are shown here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comprehensive two-hybrid analysis to explore the yeast protein interactome.

            Protein-protein interactions play crucial roles in the execution of various biological functions. Accordingly, their comprehensive description would contribute considerably to the functional interpretation of fully sequenced genomes, which are flooded with novel genes of unpredictable functions. We previously developed a system to examine two-hybrid interactions in all possible combinations between the approximately 6,000 proteins of the budding yeast Saccharomyces cerevisiae. Here we have completed the comprehensive analysis using this system to identify 4,549 two-hybrid interactions among 3,278 proteins. Unexpectedly, these data do not largely overlap with those obtained by the other project [Uetz, P., et al. (2000) Nature (London) 403, 623-627] and hence have substantially expanded our knowledge on the protein interaction space or interactome of the yeast. Cumulative connection of these binary interactions generates a single huge network linking the vast majority of the proteins. Bioinformatics-aided selection of biologically relevant interactions highlights various intriguing subnetworks. They include, for instance, the one that had successfully foreseen the involvement of a novel protein in spindle pole body function as well as the one that may uncover a hitherto unidentified multiprotein complex potentially participating in the process of vesicular transport. Our data would thus significantly expand and improve the protein interaction map for the exploration of genome functions that eventually leads to thorough understanding of the cell as a molecular system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry.

              The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein-protein interaction maps has relied on the yeast two-hybrid system, which detects binary interactions through activation of reporter gene expression. With the advent of ultrasensitive mass spectrometric protein identification methods, it is feasible to identify directly protein complexes on a proteome-wide scale. Here we report, using the budding yeast Saccharomyces cerevisiae as a test case, an example of this approach, which we term high-throughput mass spectrometric protein complex identification (HMS-PCI). Beginning with 10% of predicted yeast proteins as baits, we detected 3,617 associated proteins covering 25% of the yeast proteome. Numerous protein complexes were identified, including many new interactions in various signalling pathways and in the DNA damage response. Comparison of the HMS-PCI data set with interactions reported in the literature revealed an average threefold higher success rate in detection of known complexes compared with large-scale two-hybrid studies. Given the high degree of connectivity observed in this study, even partial HMS-PCI coverage of complex proteomes, including that of humans, should allow comprehensive identification of cellular networks.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 02 2004
                March 02 2004
                February 23 2004
                March 02 2004
                : 101
                : 9
                : 2888-2893
                Article
                10.1073/pnas.0307326101
                365715
                14981259
                d0c38f7e-fb95-49ff-bca7-aee606756a72
                © 2004
                History

                Comments

                Comment on this article