Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ectomycorrhizal Fungi Modulate Biochemical Response against Powdery Mildew Disease in Quercus robur L.

      , , , , , , , ,
      Forests
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In light of climate change, pedunculate oak (Q. robur L.) was marked as the most threatened European tree species. Pedunculate oak is particularly jeopardized by powdery mildew disease caused by Erysiphe alphitoides. We hypothesized that priming of this tree species with ectomycorrhizal fungi could mitigate biotic stress and produce bioprotective properties against the disease. In this study, we have compared oaks’ foliar physiological and biochemical responses upon infection with E. alphitoides in the presence and absence of ectomycorrhizal fungi (ECM). The main aim of this study was to inspect how ECM modulate an oak’s biochemical response to infection with E. alphitoides, particularly at the level of the accumulation of the main polyamines (putrescine, spermidine, and spermine), soluble osmolytes (proline and glycine betaine), and phenolics (total phenolic content, flavonoids, and condensed tannins). A polyamine quantification was performed after derivatization by using high-performance liquid chromatography (HLPC) coupled with fluorescent detection. Oak seedlings inoculated with ECM fungi exhibited significantly higher levels of putrescine, spermine, and proline compared to non-inoculated seedlings, indicating the priming properties of the ECM. E. alphitoides caused an increase in individual and total polyamine content and lipid peroxidation in oak leaves regardless of the effect of ECM, while causing a decrease in physiological and antioxidative parameters and water use efficiency (WUE). Common biochemical parameters may contribute to understanding the underpinning plant defense mechanisms in three-way interactions among plants and pathogenic and ectomycorrhizal fungi and can be used as reliable adaptability descriptors in the context of climate change.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid determination of free proline for water-stress studies

          Plant and Soil, 39(1), 205-207
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay.

            A simple, automated test measuring the ferric reducing ability of plasma, the FRAP assay, is presented as a novel method for assessing "antioxidant power." Ferric to ferrous ion reduction at low pH causes a colored ferrous-tripyridyltriazine complex to form. FRAP values are obtained by comparing the absorbance change at 593 nm in test reaction mixtures with those containing ferrous ions in known concentration. Absorbance changes are linear over a wide concentration range with antioxidant mixtures, including plasma, and with solutions containing one antioxidant in purified form. There is no apparent interaction between antioxidants. Measured stoichiometric factors of Trolox, alpha-tocopherol, ascorbic acid, and uric acid are all 2.0; that of bilirubin is 4.0. Activity of albumin is very low. Within- and between-run CVs are <1.0 and <3.0%, respectively, at 100-1000 micromol/liter. FRAP values of fresh plasma of healthy Chinese adults: 612-1634 micromol/liter (mean, 1017; SD, 206; n = 141). The FRAP assay is inexpensive, reagents are simple to prepare, results are highly reproducible, and the procedure is straightforward and speedy. The FRAP assay offers a putative index of antioxidant, or reducing, potential of biological fluids within the technological reach of every laboratory and researcher interested in oxidative stress and its effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.

              Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Forests
                Forests
                MDPI AG
                1999-4907
                September 2022
                September 15 2022
                : 13
                : 9
                : 1491
                Article
                10.3390/f13091491
                d13b9295-b61d-4949-ad6a-303844d846d7
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article