3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Retrospective Dosimetric Analysis of the New ESTRO-ACROP Target Volume Delineation Guidelines for Postmastectomy Volumetric Modulated Arc Therapy After Implant-Based Immediate Breast Reconstruction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: The European Society of Radiation & Oncology and Advisory Committee on Radiation Oncology Practice (ESTRO-ACROP) presented new guidelines for clinical target volume (CTV) delineation in post-mastectomy radiation therapy (PMRT) after implant-based immediate breast reconstruction (IBR-i). This study evaluated the dosimetric characteristics, dosimetric accuracy, and delivery accuracy of these guidelines in volumetric modulated arc therapy (VMAT).

          Methods and Materials: This retrospective study included 15 patients with left breast cancer who underwent mastectomy with tissue expander placement followed by PMRT. An experienced radiation oncologist delineated the CTV twice on the same image datasets based on the ESTRO-ACROP (EA-TVD) and conventional target volume delineation (C-TVD) guidelines. All VMAT plans, which used a double partial arc, were generated using six MV photons. Clinically relevant dose-volume parameters for organs at risk were compared. Dosimetric accuracy of the treatment plans and delivery accuracy were assessed.

          Results: Target volume of EA-TVD was significantly smaller than that of C-TVD. Although no statistically significant difference was noted in the target coverage between the two VMAT plans, EA-TVD VMAT significantly reduced the mean heart dose (3.99 ± 1.02 vs. 5.84 ± 1.78 Gy, p = 0.000), the maximum left anterior descending coronary artery (LAD) dose (9.43 ± 3.04 vs. 13.97 ± 6.04 Gy, p = 0.026), and the mean LAD dose (4.52 ± 1.31 vs. 6.35 ± 2.79 Gy, p = 0.028) compared with C-TVD VMAT. No significant difference was observed with respect to the total monitor units, plan complexity, and delivery quality assurance.

          Conclusions: This is the first study to show significant dose reduction for the normal heart and LAD tissue offered by the EA-TVD, while maintaining dosimetric and delivery accuracy, in PMRT after IBR-i in VMAT for left-sided breast cancer patients.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics, 2018

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018

              Europe contains 9% of the world population but has a 25% share of the global cancer burden. Up-to-date cancer statistics in Europe are key to cancer planning. Cancer incidence and mortality estimates for 25 major cancers are presented for the 40 countries in the four United Nations-defined areas of Europe and for Europe and the European Union (EU-28) for 2018.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                20 October 2020
                2020
                : 10
                : 578921
                Affiliations
                [1] 1Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine , Seoul, South Korea
                [2] 2Department of Radiation Oncology, Ajou University School of Medicine , Suwon, South Korea
                [3] 3Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine , Seoul, South Korea
                [4] 4Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine , Yongin, South Korea
                Author notes

                Edited by: Alexandra Resch, Medical University of Vienna, Austria

                Reviewed by: Uwe Haverkamp, Münster University Hospital, Germany; Malcolm David Mattes, Rutgers Cancer Institute of New Jersey, United States

                *Correspondence: Chae-Seon Hong cs.hong@ 123456yuhs.ac

                This article was submitted to Radiation Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2020.578921
                7606939
                d180bc82-bc6f-4369-9d62-15e97bba21c3
                Copyright © 2020 Chang, Chang, Park, Chung, Kim, Park, Han, Kim, Kim, Lee, Kim, Kim, Kim and Hong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 July 2020
                : 16 September 2020
                Page count
                Figures: 2, Tables: 3, Equations: 1, References: 40, Pages: 9, Words: 6583
                Funding
                Funded by: Ministry of Science ICT and Future Planning 10.13039/501100004083
                Funded by: Ministry of Science and ICT, South Korea 10.13039/501100014188
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                breast cancer,estro-acrop guideline,immediate breast reconstruction,postmastectomy radiotherapy (pmrt),vmat

                Comments

                Comment on this article