0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRPV1 feed-forward sensitisation depends on COX2 upregulation in primary sensory neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased activity and excitability (sensitisation) of a series of molecules including the transient receptor potential ion channel, vanilloid subfamily, member 1 (TRPV1) in pain-sensing (nociceptive) primary sensory neurons are pivotal for developing pathological pain experiences in tissue injuries. TRPV1 sensitisation is induced and maintained by two major mechanisms; post-translational and transcriptional changes in TRPV1 induced by inflammatory mediators produced and accumulated in injured tissues, and TRPV1 activation-induced feed-forward signalling. The latter mechanism includes synthesis of TRPV1 agonists within minutes, and upregulation of various receptors functionally linked to TRPV1 within a few hours, in nociceptive primary sensory neurons. Here, we report that a novel mechanism, which contributes to TRPV1 activation-induced TRPV1-sensitisation within ~ 30 min in at least ~ 30% of TRPV1-expressing cultured murine primary sensory neurons, is mediated through upregulation in cyclooxygenase 2 (COX2) expression and increased synthesis of a series of COX2 products. These findings highlight the importance of feed-forward signalling in sensitisation, and the value of inhibiting COX2 activity to control pain, in nociceptive primary sensory neurons in tissue injuries.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Ethical guidelines for investigations of experimental pain in conscious animals.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The capsaicin receptor: a heat-activated ion channel in the pain pathway.

            Capsaicin, the main pungent ingredient in 'hot' chilli peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system. We have used an expression cloning strategy based on calcium influx to isolate a functional cDNA encoding a capsaicin receptor from sensory neurons. This receptor is a non-selective cation channel that is structurally related to members of the TRP family of ion channels. The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition.

              Nonsteroidal anti-inflammatory drugs (NSAIDs) represent one of the most highly utilized classes of pharmaceutical agents in medicine. All NSAIDs act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective drugs. These pharmaceutical agents have quickly become established as important therapeutic medications with potentially fewer side effects than traditional NSAIDs. Additionally, characterization of the two COX isozymes is allowing the discrimination of the roles each play in physiological processes such as homeostatic maintenance of the gastrointestinal tract, renal function, blood clotting, embryonic implantation, parturition, pain, and fever. Of particular importance has been the investigation of COX-1 and -2 isozymic functions in cancer, dysregulation of inflammation, and Alzheimer's disease. More recently, additional heterogeneity in COX-related proteins has been described, with the finding of variants of COX-1 and COX-2 enzymes. These variants may function in tissue-specific physiological and pathophysiological processes and may represent important new targets for drug therapy.
                Bookmark

                Author and article information

                Contributors
                i.nagy@imperial.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                10 February 2021
                10 February 2021
                2021
                : 11
                : 3514
                Affiliations
                [1 ]GRID grid.7445.2, ISNI 0000 0001 2113 8111, Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Chelsea and Westminster Hospital, , Imperial College London, ; 369 Fulham Road, London, SW10 9NH UK
                [2 ]GRID grid.13097.3c, ISNI 0000 0001 2322 6764, Section of Vascular Biology and Inflammation Section, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, , King’s College London, ; London, UK
                Article
                82829
                10.1038/s41598-021-82829-6
                7876133
                33568699
                d234a080-da33-41f8-b295-6f5f30028161
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 September 2020
                : 15 January 2021
                Funding
                Funded by: Fundacao para a Ciencia e a Tecnologia
                Funded by: FundRef https://doi.org/10.13039/100011716, British Journal of Anaesthesia;
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                neuroscience,peripheral nervous system
                Uncategorized
                neuroscience, peripheral nervous system

                Comments

                Comment on this article