52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The training intensity distribution among well-trained and elite endurance athletes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Researchers have retrospectively analyzed the training intensity distribution (TID) of nationally and internationally competitive athletes in different endurance disciplines to determine the optimal volume and intensity for maximal adaptation. The majority of studies present a “pyramidal” TID with a high proportion of high volume, low intensity training (HVLIT). Some world-class athletes appear to adopt a so-called “polarized” TID (i.e., significant % of HVLIT and high-intensity training) during certain phases of the season. However, emerging prospective randomized controlled studies have demonstrated superior responses of variables related to endurance when applying a polarized TID in well-trained and recreational individuals when compared with a TID that emphasizes HVLIT or threshold training. The aims of the present review are to: (1) summarize the main responses of retrospective and prospective studies exploring TID; (2) provide a systematic overview on TIDs during preparation, pre-competition, and competition phases in different endurance disciplines and performance levels; (3) address whether one TID has demonstrated greater efficacy than another; and (4) highlight research gaps in an effort to direct future scientific studies.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Monitoring Training Load to Understand Fatigue in Athletes

          Many athletes, coaches, and support staff are taking an increasingly scientific approach to both designing and monitoring training programs. Appropriate load monitoring can aid in determining whether an athlete is adapting to a training program and in minimizing the risk of developing non-functional overreaching, illness, and/or injury. In order to gain an understanding of the training load and its effect on the athlete, a number of potential markers are available for use. However, very few of these markers have strong scientific evidence supporting their use, and there is yet to be a single, definitive marker described in the literature. Research has investigated a number of external load quantifying and monitoring tools, such as power output measuring devices, time-motion analysis, as well as internal load unit measures, including perception of effort, heart rate, blood lactate, and training impulse. Dissociation between external and internal load units may reveal the state of fatigue of an athlete. Other monitoring tools used by high-performance programs include heart rate recovery, neuromuscular function, biochemical/hormonal/immunological assessments, questionnaires and diaries, psychomotor speed, and sleep quality and quantity. The monitoring approach taken with athletes may depend on whether the athlete is engaging in individual or team sport activity; however, the importance of individualization of load monitoring cannot be over emphasized. Detecting meaningful changes with scientific and statistical approaches can provide confidence and certainty when implementing change. Appropriate monitoring of training load can provide important information to athletes and coaches; however, monitoring systems should be intuitive, provide efficient data analysis and interpretation, and enable efficient reporting of simple, yet scientifically valid, feedback.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Smart wearable systems: current status and future challenges.

            Extensive efforts have been made in both academia and industry in the research and development of smart wearable systems (SWS) for health monitoring (HM). Primarily influenced by skyrocketing healthcare costs and supported by recent technological advances in micro- and nanotechnologies, miniaturisation of sensors, and smart fabrics, the continuous advances in SWS will progressively change the landscape of healthcare by allowing individual management and continuous monitoring of a patient's health status. Consisting of various components and devices, ranging from sensors and actuators to multimedia devices, these systems support complex healthcare applications and enable low-cost wearable, non-invasive alternatives for continuous 24-h monitoring of health, activity, mobility, and mental status, both indoors and outdoors. Our objective has been to examine the current research in wearable to serve as references for researchers and provide perspectives for future research. Herein, we review the current research and development of and the challenges facing SWS for HM, focusing on multi-parameter physiological sensor systems and activity and mobility measurement system designs that reliably measure mobility or vital signs and integrate real-time decision support processing for disease prevention, symptom detection, and diagnosis. For this literature review, we have chosen specific selection criteria to include papers in which wearable systems or devices are covered. We describe the state of the art in SWS and provide a survey of recent implementations of wearable health-care systems. We describe current issues, challenges, and prospects of SWS. We conclude by identifying the future challenges facing SWS for HM. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New horizons for the methodology and physiology of training periodization.

              The theory of training was established about five decades ago when knowledge of athletes' preparation was far from complete and the biological background was based on a relatively small amount of objective research findings. At that time, traditional 'training periodization', a division of the entire seasonal programme into smaller periods and training units, was proposed and elucidated. Since then, international sport and sport science have experienced tremendous changes, while the traditional training periodization has remained at more or less the same level as the published studies of the initial publications. As one of the most practically oriented components of theory, training periodization is intended to offer coaches basic guidelines for structuring and planning training. However, during recent decades contradictions between the traditional model of periodization and the demands of high-performance sport practice have inevitably developed. The main limitations of traditional periodization stemmed from: (i) conflicting physiological responses produced by 'mixed' training directed at many athletic abilities; (ii) excessive fatigue elicited by prolonged periods of multi-targeted training; (iii) insufficient training stimulation induced by workloads of medium and low concentration typical of 'mixed' training; and (iv) the inability to provide multi-peak performances over the season. The attempts to overcome these limitations led to development of alternative periodization concepts. The recently developed block periodization model offers an alternative revamped approach for planning the training of high-performance athletes. Its general idea proposes the sequencing of specialized training cycles, i.e. blocks, which contain highly concentrated workloads directed to a minimal number of targeted abilities. Unlike the traditional model, in which the simultaneous development of many athletic abilities predominates, block-periodized training presupposes the consecutive development of reasonably selected target abilities. The content of block-periodized training is set down in its general principles, a taxonomy of mesocycle blocks, and guidelines for compiling an annual plan.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                27 October 2015
                2015
                : 6
                : 295
                Affiliations
                [1] 1Department of Sport Science and Kinesiology, University of Salzburg Salzburg, Austria
                [2] 2Integrative and Experimental Training Science, Department of Sport Science, University of Würzburg Würzburg, Germany
                Author notes

                Edited by: Jeffrey Woods, University of Illinois at Urbana Champaign, USA

                Reviewed by: Stephen Seiler, University of Agder, Norway; Niels H. Secher, University of Copenhagen, Denmark

                Article
                10.3389/fphys.2015.00295
                4621419
                26578968
                d245471f-50fa-42e2-869e-989142607684
                Copyright © 2015 Stöggl and Sperlich.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 March 2015
                : 05 October 2015
                Page count
                Figures: 1, Tables: 4, Equations: 0, References: 73, Pages: 14, Words: 9694
                Categories
                Physiology
                Focused Review

                Anatomy & Physiology
                high intensity training,high volume,low intensity,polarized training,prospective,pyramidal,retrospective,threshold training

                Comments

                Comment on this article