22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Interleukin-5 Expression in the Lung Epithelium of Transgenic Mice Leads to Pulmonary Changes Pathognomonic of Asthma

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have generated transgenic mice that constitutively express murine interleukin (IL)-5 in the lung epithelium. Airway expression of this cytokine resulted in a dramatic accumulation of peribronchial eosinophils and striking pathologic changes including the expansion of bronchusassociated lymphoid tissue (BALT), goblet cell hyperplasia, epithelial hypertrophy, and focal collagen deposition. These changes were also accompanied by eosinophil infiltration of the airway lumen. In addition, transgenic animals displayed airway hyperresponsiveness to methacholine in the absence of aerosolized antigen challenge. These findings demonstrate that lung-specific IL-5 expression can induce pathologic changes characteristic of asthma and may provide useful models to evaluate the efficacy of potential respiratory disease therapies or pharmaceuticals.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Eosinophilic inflammation in asthma.

          The importance of eosinophils in the pathogenesis of bronchial asthma is not established. In an attempt to evaluate the role of eosinophilic inflammation in asthma, we compared 10 normal subjects with 43 patients with chronic asthma, 19 of whom had severe disease as assessed by a clinical scoring method described by Aas and by pulmonary-function tests. Eosinophils were counted in peripheral blood and bronchoalveolar-lavage fluid, and in biopsy specimens obtained from the patients and post mortem from 8 subjects without asthma, but not from the 10 normal controls. Eosinophil cationic protein was titrated by radioimmunoassay in the bronchoalveolar-lavage fluid from all subjects and studied by immunohistochemistry in the biopsy specimens. There was a significant increase in the number of peripheral-blood eosinophils in the patients that was correlated with the clinical severity of asthma (P less than 0.001) and pulmonary function (P less than 0.03). Levels of eosinophils and eosinophil cationic protein were increased in the bronchoalveolar-lavage fluid from the patients and were also correlated with the severity of asthma (P less than 0.001 and P less than 0.002, respectively). Hematoxylin-eosin staining of bronchial-biopsy specimens showed that intraepithelial eosinophils were present only in patients with asthma. Immunohistochemical analysis of eosinophil cationic protein revealed that normal subjects had only a few nondegranulated eosinophils deep in the submucosa, whereas all the patients had degranulated eosinophils beneath the basement membrane and among epithelial cells. In some patients there was a relation between the presence of degranulated eosinophils and epithelial damage. Eosinophilic inflammation of the airways is correlated with the severity of asthma. These cells are likely to play a part in the epithelial damage seen in this disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model

            Airways inflammation is thought to play a central role in the pathogenesis of asthma. However, the precise role that individual inflammatory cells and mediators play in the development of airways hyperreactivity and the morphological changes of the lung during allergic pulmonary inflammation is unknown. In this investigation we have used a mouse model of allergic pulmonary inflammation and interleukin (IL) 5-deficient mice to establish the essential role of this cytokine and eosinophils in the initiation of aeroallergen-induced lung damage and the development of airways hyperreactivity. Sensitization and aerosol challenge of mice with ovalbumin results in airways eosinophilia and extensive lung damage analogous to that seen in asthma. Aeroallergen-challenged mice also display airways hyperreactivity to beta-methacholine. In IL-5-deficient mice, the eosinophilia, lung damage, and airways hyperreactivity normally resulting from aeroallergen challenge were abolished. Reconstitution of IL-5 production with recombinant vaccinia viruses engineered to express this factor completely restored aeroallergen-induced eosinophilia and airways dysfunction. These results indicate that IL-5 and eosinophils are central mediators in the pathogenesis of allergic lung disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo

              Experiments were designed to study the effect of systemically administered IL-5 on local eosinophil accumulation induced by the intradermal injection of the chemokine eotaxin in the guinea pig. Intravenous interleukin-5 (IL-5) stimulated a rapid and dramatic increase in the numbers of accumulating eosinophils induced by i.d.- injected eotaxin and, for comparison, leukotriene B4. The numbers of locally accumulating eosinophils correlated directly with a rapid increase in circulating eosinophils: circulating eosinophil numbers were 13-fold higher 1 h after intravenous IL-5 (18.3 pmol/kg). This increase in circulating cells corresponded with a reduction in the number of displaceable eosinophils recovered after flushing out the femur bone marrow cavity. Intradermal IL-5, at the doses tested, did not induce significant eosinophil accumulation. We propose that these experiments simulate important early features of the tissue response to local allergen exposure in a sensitized individual, with eosinophil chemoattractant chemokines having an important local role in eosinophil recruitment from blood microvessels, and IL-5 facilitating this process by acting remotely as a hormone to stimulate the release into the circulation of a rapidly mobilizable pool of bone marrow eosinophils. This action of IL-5 would be complementary to the other established activities of IL-5 that operate over a longer time course.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                16 June 1997
                : 185
                : 12
                : 2143-2156
                Affiliations
                From the [* ]Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona 85259; []Department of Laboratory Animal Resources, Roswell Park Cancer Institute, Buffalo, New York 14263; [§ ]Department of Environmental Health, Molecular and Cellular Physiology and Medicine, University of Cincinnati, Cincinnati, Ohio 45267; and []Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206
                Author notes

                Address correspondence to James J. Lee or Nancy A. Lee, Mayo Clinic Arizona, Samuel C. Johnson Medical Research Building, 13400 E. Shea Boulevard, Scottsdale, Arizona 85259.

                Article
                10.1084/jem.185.12.2143
                2196351
                9182686
                d33dcb7d-c2af-4d1f-8ebb-025b29a5c44a
                Copyright @ 1997
                History
                : 23 January 1997
                : 28 March 1997
                Categories
                Article
                Articles

                Medicine
                Medicine

                Comments

                Comment on this article