6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Infectious disease dynamics in metapopulations with heterogeneous transmission and recurrent mobility

      , , , ,
      New Journal of Physics
      IOP Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human mobility, contact patterns, and their interplay are key aspects of our social behavior that shape the spread of infectious diseases across different regions. In the light of new evidence and data sets about these two elements, epidemic models should be refined to incorporate both the heterogeneity of human contacts and the complexity of mobility patterns. Here, we propose a theoretical framework that allows accommodating these two aspects in the form of a set of Markovian equations. We validate these equations with extensive mechanistic simulations and derive analytically the epidemic threshold. The expression of this critical value allows us to evaluate its dependence on the specific demographic distribution, the structure of mobility flows, and the heterogeneity of contact patterns, thus shedding light on the microscopic mechanisms responsible for the epidemic detriment driven by recurrent mobility patterns reported in the literature.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The effect of human mobility and control measures on the COVID-19 epidemic in China

          The ongoing COVID-19 outbreak expanded rapidly throughout China. Major behavioral, clinical, and state interventions have been undertaken to mitigate the epidemic and prevent the persistence of the virus in human populations in China and worldwide. It remains unclear how these unprecedented interventions, including travel restrictions, affected COVID-19 spread in China. We use real-time mobility data from Wuhan and detailed case data including travel history to elucidate the role of case importation on transmission in cities across China and ascertain the impact of control measures. Early on, the spatial distribution of COVID-19 cases in China was explained well by human mobility data. Following the implementation of control measures, this correlation dropped and growth rates became negative in most locations, although shifts in the demographics of reported cases were still indicative of local chains of transmission outside Wuhan. This study shows that the drastic control measures implemented in China substantially mitigated the spread of COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemic Spreading in Scale-Free Networks

            The Internet has a very complex connectivity recently modeled by the class of scale-free networks. This feature, which appears to be very efficient for a communications network, favors at the same time the spreading of computer viruses. We analyze real data from computer virus infections and find the average lifetime and persistence of viral strains on the Internet. We define a dynamical model for the spreading of infections on scale-free networks, finding the absence of an epidemic threshold and its associated critical behavior. This new epidemiological framework rationalizes data of computer viruses and could help in the understanding of other spreading phenomena on communication and social networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modelling disease outbreaks in realistic urban social networks.

              Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free, which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                New Journal of Physics
                New J. Phys.
                IOP Publishing
                1367-2630
                July 12 2021
                July 01 2021
                July 12 2021
                July 01 2021
                : 23
                : 7
                : 073019
                Article
                10.1088/1367-2630/ac0c99
                d3443185-a35d-4897-a444-4d96923a8607
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article